
VTL 2.1 DOCS

version

SDMX-TWG

January 28, 2026

Contents
Documentation for VTL v2.1 1

User Manual 1

Foreword 1

Introduction 2

Structure of the document 2

General characteristics of the VTL 3

User orientation 3

Integrated approach 3

Active role for processing 4

Independence of IT implementation 5

Extensibility, customizability 6

Language effectiveness 7

Evolution of VTL 2.0 in respect to VTL 1.0 7

The Information Model 7

Structural artefacts and reusable rules 8

The core language and the standard library 8

The user defined operators 8

The VTL Definition Language 8

The functional paradigm 9

The operators 9

Changes for version 2.1 9

VTL Information Model 10

Introduction 10

Generic Model for Data and their structures 11

Data model diagram 13

Explanation of the Diagram 14

Functional Integrity 14

Examples 15

The data artefacts 17

Generic Model for Variables and Value Domains 17

Variable and Value Domain model diagram 18

Explanation of the Diagram 20

Relations and operations between Code Items 21

Conditioned Code Item Relations 24

The historical changes 25

The Variables and Value Domains artefacts 26

Generic Model for Transformations 28

Transformations model diagram 30

Explanation of the diagram 31

Examples 31

Functional paradigm 32

Transformation Consistency 32

VTL Data types 33

Data Types overview 35

Data Types model diagram 35

Explanation of the diagram 37

General conventions for describing the types 37

Scalar Types 38

Basic Scalar Types 38

Value Domain Scalar Types 40

Set Scalar Types 40

External representations and literals used in the VTL Manuals 41

Conventions for describing the scalar types 43

Compound Data Types 44

Component Types 44

Data Set Types 45

Product Types 47

Operator Types 47

Ruleset Types 47

Universal Set Types 48

Universal List Types 48

VTL Transformations 49

The Expression 50

The Assignment 51

The Result 52

The names 52

The artefact names 52

The environment name 53

The connection to the persistent storage 54

VTL Operators 54

The categories of VTL operators 54

The input parameters 55

The invocation of VTL operators 55

Level of operation 56

The Operators’ behaviour 57

The Join operators 57

Other operators: default behaviour on Identifiers, Measures and Attributes 58

The Identifier Components and the Data Points matching 59

The operations on the Measure Components 61

Operators which change the basic scalar type 64

Boolean operators 66

Set operators 66

Behaviour for Missing Data 66

Behaviour for Attribute Components 67

The Attribute propagation rule 68

Properties of the Attribute propagation algorithm 70

Governance, other requirements and future work 70

The governance of the extensions 71

Relations with the GSIM Information Model 71

Data Sets and Data Structures 72

Value Domains 74

Transformation model and Business Process Model 74

Annex 1 – EBNF 74

Properties of VTL grammar 74

Reference Manual 75

Foreword 75

Introduction 76

Overwiew of the language and conventions 76

Introduction 76

Conventions for writing VTL Transformations 77

Typographical conventions 78

Abbreviations for the names of the artefacts 79

Conventions for describing the operators’ syntax 79

Description of data types of operands and result 81

VTL-ML Operators 81

VTL-ML - Evaluation order of the Operators 87

Description of VTL Operators 88

VTL-DL - Rulesets 89

define datapoint ruleset 89

Semantics 89

Syntax 89

Syntax description 89

Parameters 91

Constraints 91

Semantic specification 91

Examples 92

define hierarchical ruleset 93

Semantics 93

Syntax 93

Syntax description 94

Input parameters type 96

Constraints 97

Semantic specification 97

Examples 101

VTL-DL – User Defined Operators 102

define operator 102

Syntax 102

Syntax description 102

Input parameters type 102

Constraints 102

Semantic specification 103

Examples 103

Data type syntax 103

VTL-ML - Typical behaviours of the ML Operators 104

Typical behaviour of most ML Operators 104

Operators applicable on one Scalar Value or Data Set or Data Set Component 104

Operators applicable on two Scalar Values or Data Sets or Data Set Components 105

Operators applicable on more than two Scalar Values or Data Set Components 107

Behaviour of Boolean operators 108

Behaviour of Set operators 108

Behaviour of Time operators 108

Operators changing the data type 109

Type Conversion and Formatting Mask 110

The Numbers Formatting Mask 110

The Time Formatting Mask 110

Attribute propagation 113

Operators 114

VTL-ML - General Purpose Operators 114

Parentheses: () 114

Syntax 114

Input parameters 114

Examples of valid syntaxes 114

Semantics for scalar operations 114

Input parameters type 114

Result type 115

Additional Constraints 115

Behaviour 115

Examples 115

Example 1 115

Persistent assignment: <- 115

Syntax 115

Input parameters 116

Examples of valid syntaxes 116

Semantics for scalar operations 116

Input parameters type 116

Result type 116

Additional Constraints 116

Behaviour 116

Examples 116

Example 1 117

Non-persistent assignment: :=` 117

Syntax 117

Input parameters 117

Examples of valid syntaxes 117

Semantics for scalar operations 117

Input parameters type 117

Result type 117

Additional Constraints 118

Behaviour 118

Examples 118

Example 1 118

Membership: # 118

Syntax 118

Input parameters 119

Semantics for scalar operations 119

Input parameters type 119

Result type 119

Additional Constraints 119

Behaviour 119

Examples 119

Example 1 120

Example 2 120

Example 3 120

Example 4 120

Example 5 121

Example 6 121

User-defined operator call 121

Syntax 121

Input parameters 121

Examples of valid syntaxes 121

Semantics for scalar operations 121

Input parameters type 121

Result type 122

Additional Constraints 122

Behaviour 122

Examples 122

Example 1 122

Evaluation of an external routine: eval 122

Syntax 122

Input parameters 122

Examples of valid syntaxes 122

Semantics for scalar operations 123

Input parameters type 123

Result type 123

Additional Constraints 123

Behaviour 123

Examples 123

Type conversion: cast 124

Syntax 124

Input parameters 124

Semantics for scalar operations 124

Input parameters type 124

Result type 124

Additional Constraints 124

Behaviour 124

Examples 127

Example 1 127

Example 2 127

Example 3 127

Example 4 127

Example 5 127

Example 6 127

Example 7 128

Example 8 128

Example 9 128

VTL-ML - Join operators 128

Join: inner_join, left_join, full_join, cross_join 128

Syntax 128

Input parameters 129

Examples of valid syntaxes 131

Semantics for scalar operations 131

Input parameters type 131

Result type 132

Additional Constraints 132

Behaviour 133

Examples 136

Example 1 137

Example 2 137

Example 3 137

Example 4 137

Example 5 138

Example 6 138

Example 7 138

VTL-ML - String Operators 139

String concatenation: \ 139

Syntax 139

Input parameters 139

Semantics for scalar operations 139

Input parameters type 139

Result type 139

Additional Constraints 139

Behavior 139

Examples 139

Example 1 139

Example 2 140

Whitespace removal: trim, rtrim, ltrim 140

Syntax 140

Input parameters 140

Semantics for scalar operations 140

Input parameters type 140

Result type 140

Additional Constraints 140

Behavior 141

Examples 141

Example 1 141

Example 2 141

Character case conversion: upper/lower 141

Syntax 141

Input parameters 141

Examples of valid syntaxes 141

Semantics for scalar operations 142

Input parameters type 142

Result type 142

Additional Constraints 142

Behavior 142

Examples 142

Example 1 142

Example 2 142

Sub-string extraction: substr 143

Syntax 143

Input parameters 143

Examples of valid syntaxes 143

Semantics for scalar operations 143

Input parameters type 143

Result type 144

Additional Constraints 144

Behavior 144

Examples 144

Example 1 144

Example 2 144

Example 3 145

String pattern replacement: replace 145

Syntax 145

Input parameters 145

Examples of valid syntaxes 145

Semantics for scalar operations 145

Input parameters type 145

Result type 145

Additional Constraints 146

Behaviour 146

Examples 146

Example 1 146

Example 2 146

String pattern location: instr 147

Syntax 147

Input parameters 147

Examplesof valid syntaxes 147

Semantics for scalar operations 147

Input parameters type 147

Result type 148

Additional Constraints 148

Behaviour 148

Examples 148

Example 1 148

Example 2 148

Example 3 149

Example 4 149

String length: length 149

Syntax 149

Input parameters 149

Examples of valid syntaxes 149

Semantics for scalar operations 149

Input parameters type 149

Result type 150

Additional Constraints 150

Behaviour 150

Examples 150

Example 1 150

Example 2 150

Example 3 151

Example 4 151

VTL-ML - Numeric Operators 151

Unary Plus: + 151

Syntax 151

Input parameters 151

Examples of valid syntaxes 151

Semantics for scalar operations 151

Input parameters type 151

Result type 152

Additional Constraints 152

Behaviour 152

Examples 152

Example 1 152

Example 2 152

Unary Minus: - 153

Syntax 153

Input parameters 153

Examples of valid syntaxes 153

Semantics for scalar operations 153

Input parameters type 153

Result type 153

Additional Constraints 153

Behaviour 153

Examples 153

Example 1 154

Example 2 154

Addition: + 154

Syntax 154

Input parameters 154

examples of valid syntaxes 154

Semantics for scalar operations 154

Input parameters type 154

Result type 155

Additional Constraints 155

Behaviour 155

Examples 155

Example 1 155

Example 2 155

Example 3 156

Subtraction: - 156

Syntax 156

Input parameters 156

Examples of valid syntaxes 156

Semantics for scalar operations 156

Input parameters type 156

Result type 157

Additional Constraints 157

Behaviour 157

Examples 157

Example 1 157

Example 2 157

Example 3 158

Multiplication: * 158

Syntax 158

Input parameters 158

Examples of valid syntaxes 158

Semantics for scalar operations 158

Input parameters type 158

Result type 159

Additional Constraints 159

Behavior 159

Examples 159

Example 1 159

Example 2 159

Example 3 160

Division: / 160

Syntax 160

Input parameters 160

Examples of valid syntaxes 160

Semantics for scalar operations 160

Input parameters type 160

Result type 160

Additional Constraints 161

Behavior 161

Examples 161

Example 1 161

Example 2 162

Example 3 162

Modulo: mod 162

Syntax 162

Input parameters 162

Examples of valid syntaxes 162

Semantics for scalar operations 162

Input parameters type 163

Result type 163

Additional Constraints 163

Behavior 163

Examples 163

Example 1 163

Example 2 164

Example 3 164

Rounding: round 164

Syntax 164

Input parameters 164

Examples of valid syntaxes 164

Semantics for scalar operations 165

Input parameters type 165

Result type 165

Additional Constraints 165

Behavior 165

Examples 165

Example 1 166

Example 2 166

Example 3 166

Truncation: trunc 166

Syntax 166

Input parameters 166

Examples of valid syntaxes 167

Semantics for scalar operations 167

Input parameters type 167

Result type 167

Additional Constraints 167

Behavior 167

Examples 167

Example 1 168

Example 2 168

Example 3 168

Ceiling: ceil 169

Syntax 169

Input parameters 169

Examples of valid syntaxes 169

Semantics for scalar operations 169

Input parameters type 169

Result type 169

Additional Constraints 169

Behaviour 169

Examples 169

Example 1 170

Example 2 170

Floor: floor 170

Syntax 170

Input parameters 170

Examples of valid syntaxes 170

Semantics for scalar operations 170

Input parameters type 171

Result type 171

Additional Constraints 171

Behaviour 171

Examples 171

Example 1 171

Example 2 171

Absolute value: abs 172

Syntax 172

Input parameters 172

Examples of valid syntaxes 172

Semantics for scalar operations 172

Input parameters type 172

Result type 172

Additional Constraints 172

Behavior 172

Examples 172

Example 1 173

Example 2 173

Exponential: exp 173

Syntax 173

Input parameters 173

Examples of valid syntaxes 173

Semantics for scalar operations 173

Input parameters type 174

Result type 174

Additional Constraints 174

Behavior 174

Examples 174

Example 1 174

Example 2 174

Natural logarithm: ln 175

Syntax 175

Input parameters 175

Examples of valid syntaxes 175

Semantics for scalar operations 175

Input parameters type 175

Result type 175

Additional Constraints 175

Behaviour 175

Examples 175

Example 1 176

Example 2 176

Power: power 176

Syntax 176

Input parameters 176

Examples of valid syntaxes 176

Semantics for scalar operations 176

Input parameters type 177

Result type 177

Additional Constraints 177

Behaviour 177

Examples 177

Example 1 177

Example 2 178

Logarithm: log 178

Syntax 178

Input parameters 178

Examples of valid syntaxes 178

Semantics for scalar operations 178

Input parameters type 178

Result type 178

Additional Constraints 179

Behavior 179

Examples 179

Example 1 179

Example 2 179

Square root: sqrt 179

Syntax 179

Input parameters 180

Examples of valid syntaxes 180

Semantics for scalar operations 180

Input parameters type 180

Result type 180

Additional Constraints 180

Behaviour 180

Examples 180

Example 1 180

Example 2 181

Random: random 181

Syntax 181

Input parameters 181

Examples of valid syntaxes 181

Semantics for scalar operations 181

Input parameters type 181

Result type 181

Additional Constraints 182

Behaviour 182

Examples 182

Example 1 182

Example 2 182

VTL-ML - Comparison Operators 183

Equal to: = 183

Syntax 183

Input parameters 183

Examples of valid syntaxes 183

Semantics for scalar operations 183

Input parameters type 183

Result type 183

Additional Constraints 183

Behaviour 183

Examples 183

Example 1 183

Example 2 184

Not equal to: <> 184

Syntax 184

Input parameters 184

Examples of valid syntaxes 184

Semantics for scalar operations 184

Input parameters type 184

Result type 185

Additional Constraints 185

Behaviour 185

Examples 185

Example 1 185

Example 2 185

Greater than: > >= 186

Syntax 186

Input parameters 186

Examples of valid syntaxes 186

Semantics for scalar operations 186

Input parameters type 186

Result type 186

Additional Constraints 186

Behaviour 186

Examples 186

Example 1 187

Example 2 187

Example 3 187

Less than < <= 188

Syntax 188

Input parameters 188

Examples of valid syntaxes 188

Semantics for scalar operations 188

Input parameters type 188

Result type 188

Additional Constraints 188

Behaviour 188

Examples 188

Example 1 189

Between between 189

Syntax 189

Input parameters 189

Examples of valid syntaxes 189

Semantics for scalar operations 189

Input parameters type 190

Result type 190

Additional Constraints 190

Behaviour 190

Examples 190

Example 1 190

Element of in / not_in 190

Syntax 190

Input parameters 191

Examples of valid syntaxes 191

Semantics for scalar operations 191

Input parameters type 191

Result type 191

Additional Constraints 191

Behavior 191

Examples 192

Example 1 192

Example 2 192

Example 3 192

Match characters: match_characters 193

Syntax 193

Input parameters 193

Examples of valid syntaxes 193

Semantics for scalar operations 193

Input parameters type 193

Result type 193

Additional Constraints 194

Behaviour 194

Examples 194

Example 1 194

Is null: isnull 194

Syntax 194

Input parameters 194

Examples of valid syntaxes 194

Semantics for scalar operations 194

Input parameters type 194

Result type 195

Additional Constraints 195

Behaviour 195

Examples 195

Example 1 195

Example 2 195

Exists in: exists_in 196

Syntax 196

Input parameters 196

Examples of valid syntaxes 196

Semantics for scalar operations 196

Input parameters type 196

Result type 196

Additional Constraints 196

Behaviour 197

Examples 197

Example 1 197

Example 2 198

Example 3 198

VTL-ML - Boolean Operators 198

Logical conjunction: and 198

Syntax 198

Input parameters 198

Examples of valid syntaxes 198

Semantics for scalar operations 198

Input parameters type 199

Result type 199

Additional Constraints 199

Behavior 199

Examples 199

Example 1 199

Example 2 200

Logical disjunction: or 200

Syntax 200

Input parameters 200

Examples of valid syntaxes 200

Semantics for scalar operations 200

Input parameters type 200

Result type 201

Additional Constraints 201

Behavior 201

Examples 201

Example 1 201

Example 2 202

Exclusive disjunction: xor 202

Syntax 202

Input parameters 202

Examples of valid syntaxes 202

Semantics for scalar operations 202

Input parameters type 202

Result type 203

Additional Constraints 203

Behaviour 203

Examples 203

Example 1 203

Example 2 204

Logical negation: not 204

Syntax 204

Input parameters 204

Examples of valid syntaxes 204

Semantics for scalar operations 204

Input parameters type 204

Result type 204

Additional Constraints 205

Behaviour 205

Examples 205

Example 1 205

Example 2 205

VTL-ML - Time Operators 206

Period indicator: period_indicator 206

Syntax 206

Input parameters 206

Examples of valid syntaxes 206

Semantics for scalar operations 206

Input parameters type 206

Result type 207

Additional Constraints 207

Behaviour 207

Examples 207

Example 1 207

Example 2 207

Fill time series: fill_time_series 208

Syntax 208

Input parameters 208

Examples of valid syntaxes 208

Semantics for scalar operations 208

Input parameters type 208

Result type 208

Additional Constraints 208

Behaviour 208

Examples 209

Example 1 210

Example 2 210

Example 3 211

Example 4 211

Example 5 211

Example 6 212

Example 7 212

Example 8 213

Flow to stock: flow_to_stock 213

Syntax 213

Input parameters 213

Examples of valid syntaxes 213

Semantics for scalar operations 213

Input parameters type 213

Result type 214

Additional Constraints 214

Behavior 214

Examples 214

Example 1 215

Example 2 216

Example 3 216

Example 4 216

Stock to flow: stock_to_flow 217

Syntax 217

Input parameters 217

Examples of valid syntaxes 217

Semantics for scalar operations 217

Input parameters type 217

Result type 217

Additional Constraints 217

Behaviour 217

Examples 218

Example 1 219

Example 2 219

Example 3 220

Example 4 220

Time shift: timeshift 221

Syntax 221

Input parameters 221

Examples of valid syntaxes 221

Semantics for scalar operations 221

Input parameters type 221

Result type 221

Additional Constraints 221

Behavior 221

Examples 221

Example 1 223

Example 2 223

Example 3 224

Example 4 224

Time aggregation: time_agg 224

Syntax 224

Input parameters 224

Examples of valid syntaxes 225

Semantics for scalar operations 225

Input parameters type 225

Result type 225

Additional Constraints 225

Behaviour 225

Examples 226

Example 1 226

Example 2 226

Example 3 226

Example 4 226

Actual time: current_date 227

Syntax 227

Input parameters 227

Examples of valid syntaxes 227

Semantics for scalar operations 227

Input parameters type 227

Result type 227

Additional Constraints 227

Behavior 227

Examples 227

Example 1 227

Example 2 227

Days between two dates: datediff 227

Syntax 227

Input parameters 227

Examples of valid syntaxes 228

Semantics for scalar operations 228

Input parameters type 228

Result type 228

Additional Constraints 228

Behaviour 228

Examples 228

Example 1 228

Example 2 229

Add a time unit to a dete: dateadd 229

Syntax 229

Input parameters 229

Examples of valid syntaxes 229

Semantics for scalar operations 229

Input parameters type 229

Result type 229

Additional Constraints 230

Behaviour 230

Examples 230

Example 1 230

Example 2 230

Extract time period from a date: getyear, getmonth, dayofmonth, dayofyear 230

Syntax 230

Input parameters 230

Examples of valid syntaxes 231

Semantics for scalar operations 231

Input parameters type 231

Result type 231

Additional Constraints 231

Behaviour 231

Examples 231

Example 1 231

Example 2 232

Number of days to duration: daytoyear, daytomonth 232

Syntax 232

Input parameters 232

Examples of valid syntaxes 232

Semantics for scalar operations 232

Input parameters type 232

Result type 232

Additional Constraints 232

Behaviour 232

Examples 233

Example 1 233

Example 2 233

Example 2 233

Example 3 233

Duration to number of days: yeartoday, monthtoday 233

Syntax 233

Input parameters 234

Examples of valid syntaxes 234

Semantics for scalar operations 234

Input parameters type 234

Result type 234

Additional Constraints 234

Behaviour 234

Examples 234

Example 1 235

Example 2 235

Example 3 235

VTL-ML - Set Operators 235

Union: union 235

Syntax 235

Input parameters 235

Examples of valid syntaxes 235

Semantics for scalar operations 235

Input parameters type 235

Result type 235

Additional Constraints 236

Behaviour 236

Examples 236

Example 1 236

Example 2 237

Intersection: interesect 237

Syntax 237

Input parameters 237

Examples of valid syntaxes 237

Semantics for scalar operations 237

Input parameters type 237

Result type 237

Additional Constraints 237

Behavior 237

Examples 238

Example 1 238

Set difference: setdiff 238

Syntax 238

Input parameters 238

Examples of valid syntaxes 238

Semantics for scalar operations 238

Input parameters type 239

Result type 239

Additional Constraints 239

Behavior 239

Examples 239

Example 1 240

Example 2 240

Symmetric difference: symdiff 240

Syntax 240

Input parameters 240

Semantics for scalar operations 240

Input parameters type 240

Result type 240

Additional Constraints 241

Behaviour 241

Examples 241

Example 1 241

VTL-ML - Hierarchical aggregation 242

Hierarchical roll-up: hierarchy 242

Syntax 242

Input parameters 242

Examples of valid syntaxes 242

Semantics for scalar operations 242

Input parameters type 242

Result type 243

Additional Constraints 243

Behaviour 243

Examples 245

Example 1 246

Example 2 246

Example 3 247

VTL-ML - Aggregate and Analytic operators 247

Aggregate invocation 248

Syntax 248

Input parameters 248

Examples of valid syntaxes 250

Semantics for scalar operations 250

Input parameters type 250

Result type 250

Additional Constraints 251

Behaviour 251

Examples 251

Example 1 252

Example 2 252

Example 3 253

Example 4 253

Analytic invocation 253

Syntax 253

Input parameters 253

Examples of valid syntaxes 255

Semantics for scalar operations 255

Input parameters type 256

Result type 256

Additional Constraints 256

Behaviour 256

Examples 257

Example 1 257

Counting the number of data points: count 258

Syntax 258

Input parameters 258

Semantics for scalar operations 258

Input parameters type 258

Result type 258

Additional Constraints 258

Behaviour 258

Examples 258

Example 1 259

Example 2 259

Minimun value: min 259

Syntax 259

Input parameters 259

Semantics for scalar operations 259

Input parameters type 260

Result type 260

Additional Constraints 260

Behaviour 260

Examples 260

Example 1 260

Maximum value: max 260

Syntax 260

Input parameters 261

Semantics for scalar operations 261

Input parameters type 261

Result type 261

Additional Constraints 261

Behaviour 261

Examples 261

Example 1 262

Median value: median 262

Syntax 262

Input parameters 262

Semantics for scalar operations 262

Input parameters type 262

Result type 262

Additional Constraints 262

Behaviour 263

Examples 263

Example 1 263

Sum: sum 263

Syntax 263

Input parameters 263

Semantics for scalar operations 263

Input parameters type 264

Result type 264

Additional Constraints 264

Behaviour 264

Examples 264

Example 1 264

Average value: avg 264

Syntax 264

Input parameters 265

Semantics for scalar operations 265

Input parameters type 265

Result type 265

Additional Constraints 265

Behaviour 265

Examples 265

Example 1 265

Population standard deviation: stddev_pop 266

Syntax 266

Input parameters 266

Semantics for scalar operations 266

Input parameters type 266

Result type 266

Additional Constraints 266

Behaviour 266

Examples 267

Example 1 267

Sample standard deviation: stddev_samp 267

Syntax 267

Input parameters 267

Semantics for scalar operations 267

Input parameters type 267

Result type 268

Additional Constraints 268

Behaviour 268

Examples 268

Example 1 268

Population variance: var_pop 268

Syntax 268

Input parameters 269

Semantics for scalar operations 269

Input parameters type 269

Result type 269

Additional Constraints 269

Behaviour 269

Examples 269

Example 1 269

Sample variance: var_samp 270

Syntax 270

Input parameters 270

Semantics for scalar operations 270

Input parameters type 270

Result type 270

Additional Constraints 270

Behaviour 270

Examples 271

Example 1 271

First value: first_value 271

Syntax 271

Input parameters 271

Semantics for scalar operations 271

Input parameters type 271

Result type 271

Additional Constraints 272

Behaviour 272

Examples 272

Example 1 272

Last value: last_value 273

Syntax 273

Input parameters 273

Semantics for scalar operations 273

Input parameters type 273

Result type 273

Additional Constraints 273

Behaviour 273

Examples 273

Example 1 274

Lag: lag 274

Syntax 274

Input parameters 274

Semantics for scalar operations 274

Input parameters type 274

Result type 275

Additional Constraints 275

Behaviour 275

Examples 275

Example 1 275

Lead: lead 276

Syntax 276

Input parameters 276

Semantics for scalar operations 276

Input parameters type 276

Result type 276

Additional Constraints 277

Behaviour 277

Examples 277

Example 1 277

Rank: rank 278

Syntax 278

Input parameters 278

Semantics for scalar operations 278

Input parameters type 278

Result type 278

Additional Constraints 278

Behaviour 278

Examples 278

Example 1 279

Ratio to report: ratio_to_report 279

Syntax 279

Input parameters 279

Semantics for scalar operations 279

Input parameters type 279

Result type 279

Additional Constraints 280

Behaviour 280

Examples 280

Example 1 280

VTL-ML - Data Validation Operators 281

Check datapoint: check_datapoint 281

Syntax 281

Input parameters 281

Examples of valid syntaxes 281

Semantics for scalar operations 281

Input parameters type 281

Result type 282

Additional Constraints 282

Behaviour 282

Examples 282

Example 1 283

Example 2 283

Check hierarchy: check_hierarchy 283

Syntax 283

Input parameters 283

Examples of valid syntaxes 284

Input parameters type 284

Result type 284

Additional Constraints 284

Behaviour 285

Examples 288

Example 1 289

Check : check 289

Syntax 289

Input parameters 289

Examples of valid syntaxes 290

Input parameters type 290

Result type 290

Additional Constraints 290

Behaviour 290

Examples 291

Example 1 291

VTL-ML - Conditional Operators 292

if-then-else: if 292

Syntax 292

Input parameters 292

Examples of valid syntaxes 292

Semantics for scalar operations 292

Input parameters type 292

Result type 293

Additional Constraints 293

Behaviour 293

Examples 293

Example 1 294

Case: case 294

Syntax 294

Input parameters 294

Examples of valid syntaxes 295

Semantics for scalar operations 295

Input parameters type 295

Result type 295

Additional Constraints 295

Behaviour 295

Examples 296

Example 1 296

Nvl: nvl 296

Syntax 296

Input parameters 296

Examples of valid syntaxes 296

Semantics for scalar operations 297

Input parameters type 297

Result type 297

Additional Constraints 297

Behaviour 297

Examples 297

Example 1 298

VTL-ML - Clause Operators 298

Filtering Data Points: filter 298

Syntax 298

Input parameters 298

Examples of valid syntaxes 298

Semantics for scalar operations 298

Input parameters type 298

Result type 298

Additional Constraints 299

Behavior 299

Examples 299

Example 1 299

Calculation of a Component: calc 299

Syntax 299

Input parameters 299

Examples of valid syntaxes 300

Semantics for scalar operations 300

Input parameters type 300

Result type 300

Additional Constraints 300

Behavior 300

Examples 300

Example 1 301

Example 2 301

Aggregation: aggr 301

Syntax 301

Input parameters 301

Examples of valid syntaxes 303

Semantics for scalar operations 303

Input parameters type 303

Result type 303

Additional Constraints 304

Behaviour 304

Examples 304

Example 1 305

Example 2 305

Example 3 305

Maintaining Components: keep 305

Syntax 305

Input parameters 305

Examples of valid syntaxes 305

Semantics for scalar operations 306

Input parameters type 306

Result type 306

Additional Constraints 306

Behaviour 306

Examples 306

Example 1 306

Removal of Components: drop 307

Syntax 307

Input parameters 307

Examples of valid syntaxes 307

Semantics for scalar operations 307

Input parameters type 307

Result type 307

Additional Constraints 307

Behaviour 307

Examples 307

Example 1 308

Change of Component name: rename 308

Syntax 308

Input parameters 308

Examples of valid syntaxes 308

Semantics for scalar operations 308

Input parameters type 308

Result type 308

Additional Constraints 308

Behaviour 309

Examples 309

Example 1 309

Pivoting: pivot 309

Syntax 309

Input parameters 309

Examples of valid syntaxes 309

Semantics for scalar operations 310

Input parameters type 310

Result type 310

Additional Constraints 310

Behaviour 310

Examples 310

Example 1 311

Unpivoting: unpivot 311

Syntax 311

Input parameters 311

Examples of valid syntaxes 311

Semantics for scalar operations 311

Input parameters type 311

Result type 311

Additional Constraints 311

Behaviour 312

Examples 312

Example 1 312

Subspace: sub 312

Syntax 312

Input parameters 312

Examples of valid syntaxes 313

Semantics for scalar operations 313

Input parameters type 313

Result type 313

Additional Constraints 313

Behaviour 313

Examples 314

Example 1 314

Example 2 314

Example 3 314

Documentation for VTL v2.1

User Manual

Foreword
The Task force for the Validation and Transformation Language (VTL), created in 2012-2013 under the initiative of
the SDMX Secretariat, is pleased to present the version 2.1 of VTL.

The SDMX Secretariat launched the VTL work at the end of 2012, moving on from the consideration that SDMX
already had a package for transformations and expressions in its information model, while a specific implementation
language was missing. To make this framework operational, a standard language for defining validation and
transformation rules (operators, their syntax and semantics) has been adopted.

The VTL task force was set up early in 2013, composed of members of SDMX, DDI and GSIM communities and the
work started in summer 2013. The intention was to provide a language usable by statisticians to express logical
validation rules and transformations on data, described as either dimensional tables or unit-record data. The
assumption is that this logical formalization of validation and transformation rules could be converted into specific
programming languages for execution (SAS, R, Java, SQL, etc.), and would provide at the same time, a “neutral”
business-level expression of the processing taking place, against which various implementations can be mapped.
Experience with existing examples suggests that this goal would be attainable.

An important point that emerged is that several standards are interested in such a kind of language. However, each
standard operates on its model artefacts and produces artefacts within the same model (property of closure). To
cope with this, VTL has been built upon a very basic information model (VTL IM), taking the common parts of GSIM,
SDMX and DDI, mainly using artefacts from GSIM, somewhat simplified and with some additional detail. In this way,
existing standards (GSIM, SDMX, DDI, others) would be allowed to adopt VTL by mapping their information model
against the VTL IM. Therefore, although a work-product of SDMX, the VTL language in itself is independent of SDMX
and will be usable with other standards as well. Thanks to the possibility of being mapped with the basic part of the
IM of other standards, the VTL IM also makes it possible to collect and manage the basic definitions of data
represented in different standards.

For the reason described above, the VTL specifications are designed at logical level, independently of any other
standard, including SDMX. The VTL specifications, therefore, are self-standing and can be implemented either on
their own or by other standards (including SDMX).

The first public consultation on VTL (version 1.0) was held in 2014. Many comments were incorporated in the VTL
1.0 version, published in March 2015. Other suggestions for improving the language, received afterwards, fed the
discussion for building the draft version 1.1, which contained many new features, was completed in the second half
of 2016 and provided for public consultation until the beginning of 2017.

The high number and wide impact of comments and suggestions induced a high workload on the VTL TF, which
agreed to proceed in two steps for the publication of the final documentation. The first step has been dedicated to
fixing some high-priority features and making them as much stable as possible; given the high number of changes, it
was decided that the new version should be considered as a major one and thus named VTL 2.0.

The second step, taking also into consideration that some VTL implementation initiatives are already in place, is
aimed at acknowledging and fixing other features considered of minor impact and priority, without affecting the
features already published or the possible relevant implementations. In parallel with the work for designing the new
VTL version, the task force has been involved in the SDMX implementation of VTL, aiming at defining formats for
exchanging rules and developing web services to retrieve them; the new features have been included in the SDMX
3.0 package.

The present VTL 2.1 package contains the general VTL specifications, independently of the possible
implementations of other standards; it includes:

a. The User Manual, highlighting the main characteristics of VTL, its core assumptions and the information model
the language is based on;

b. The Reference Manual, containing the full library of operators ordered by category, including examples;

c. eBNF notation (extended Backus-Naur Form) which is the technical notation to be used as a test bed for all the
examples;

Documentation for VTL v2.1

1

d. A Technical Notes document, containing some guidelines for VTL implementation.

The latest version of VTL is freely available online at https://sdmx.org/?page_id=5096

Acknowledgements

The VTL specifications have been prepared thanks to the collective input of experts from Bank of Italy, Bank for
International Settlements (BIS), European Central Bank (ECB), Eurostat, ILO, INEGI-Mexico, INSEE-France,
ISTAT-Italy, OECD, Statistics Netherlands, and UNESCO. Other experts from the SDMX Technical Working Group,
the SDMX Statistical Working Group and the DDI initiative were consulted and participated in reviewing the
documentation.

The list of contributors and reviewers includes the following experts: Sami Airo, Foteini Andrikopoulou, David
Barraclough, Luigi Bellomarini, Marc Bouffard, Maurizio Capaccioli, Franck Cotton, Vincenzo Del Vecchio, Fabio Di
Giovanni, Jens Dossé, Heinrich Ehrmann, Bryan Fitzpatrick, Tjalling Gelsema, Luca Gramaglia, Arofan Gregory,
Gyorgy Gyomai, Edgardo Greising, Dragan Ivanovic, Angelo Linardi, Juan Munoz, Chris Nelson, Stratos
Nikoloutsos, Antonio Olleros, Stefano Pambianco, Marco Pellegrino, Michele Romanelli, Juan Alberto Sanchez,
Roberto Sannino, Angel Simon Delgado, Daniel Suranyi, Olav ten Bosch, Laura Vignola, Fernando Wagener and
Nikolaos Zisimos.

Feedback and suggestions for improvement are encouraged and should be sent to the SDMX Technical Working
Group (twg@sdmx.org).

Introduction
This document presents the Validation and Transformation Language (also known as ‘VTL’) version 2.1.

The purpose of VTL is to allow a formal and standard definition of algorithms to validate statistical data and calculate
derived data.

The first development of VTL aims at enabling, as a priority, the formalisation of data validation algorithms rather
than tackling more complex algorithms for data compilation. In fact, the assessment of business cases showed that
the majority of the institutions ascribes (prescribes) a higher priority to a standard language for supporting the
validation processes and in particular to the possibility of sharing validation rules with the respective data providers,
in order to specify the quality requirements and allow validation also before provision.

This document is the outcome of a second iteration of the first phase, and therefore still presents a version of VTL
primarily oriented to support the data validation. However, as the features needed for validation also include simple
calculations, this version of VTL can support basic compilation needs as well. In general, validation is considered as
a particular case of transformation; therefore, the term “Transformation” is meant to be more general, including
validation as well. The actual operators included in this version of VTL are described in the Reference Manual.

Although VTL is developed under the umbrella of the SDMX governance, DDI and GSIM users may also be highly
interested in adopting a language for validation and transformation. In particular, organizations involved in the
SDMX, DDI and GSIM communities and in the Modernisation of Official Statistics (HLG-MOS) expressed their wish
of adopting VTL as a unique language, usable in SDMX, DDI and GSIM.

Accordingly, the task-force working for the VTL development agreed on the objective of adopting a common
language, in the hope of avoiding the risk of having diverging variants.

Consequently, VTL is designed as a language relatively independent of the details of SDMX, DDI and GSIM. It is
based on an independent information model (IM), made of the very basic artefacts common to these standards.
Other models can inherit the VTL language by unequivocally mapping their artefacts to those of the VTL IM.

Structure of the document

The following main sections of the document describe the following topics:

The general characteristics of the VTL, which are also the main requirements that the VTL is aimed to fulfil.

The changes of VTL 2.x in respect to VTL 1.0 and a section for changes for version 2.1.

The Information Model on which the language is based. In particular, it describes the generic model of the data
artefacts for which the language is aimed to validate and transform the generic model of the variables and value
domains used for defining the data artefacts and the generic model of the transformations.

The Data Types that the VTL manipulates, i.e. types of artefacts i.e. types of artefacts that can be passed in input to
or are returned in output from the VTL operators.

Documentation for VTL v2.1

2

https://sdmx.org/?page_id=5096
mailto:twg@sdmx.org

The general rules for defining the Transformations, which are the algorithms that describe how the operands are
transformed into the results.

The characteristics, the invocation and the behaviour of the VTL Operators, taking into account the perspective of
users that need to learn how to use them.

A final part highlights some issues related to the governance of VTL developments and to future work, following a
number of comments, suggestions and other requirements that were submitted to the task force in order to enhance
the VTL package.

A short annex gives some background information about the BNF (Backus-Naur Form) syntax used for providing a
context-free representation of VTL.

The Extended BNF (EBNF) representation of the VTL 2.1 package is available at https://sdmx.org/?page_id=5096.

General characteristics of the VTL
This section lists and briefly illustrates some general high-level characteristics of the validation and transformation
language. They have been discussed and shared as requirements for the language in the VTL working group since
the beginning of the work and have been taken into consideration for the design of the language.

User orientation

• The language is designed for users without information technology (IT) skills, who should be able to define
calculations and validations independently, without the intervention of IT personnel;

• The language is based on a “user” perspective and a “user” information model (IM) and not on possible IT
perspectives (and IMs)

• As much as possible, the language is able to manipulate statistical data at an abstract/conceptual level,
independently of the IT representation used to store or exchange the data observations (e.g. files, tables,
xml tags), so operating on abstract (from IT) model artefacts to produce other abstract (from IT) model
artefacts

• It references IM objects and does not use direct references to IT objects

• The language is intuitive and friendly (users should be able to define and understand validations and
transformations as easily as possible), so the syntax is:

• Designed according to mathematics, which is a universal knowledge;

• Expressed in English to be shareable in all countries;

• As simple, intuitive and self-explanatory as possible;

• Based on common mathematical expressions, which involve “operands” operated on by “operators” to
obtain a certain result;

• Designed with minimal redundancies (e.g. possibly avoiding operators specifying the same operation in
different ways without concrete reasons).

• The language is oriented to statistics, and therefore it is capable of operating on statistical objects and
envisages the operators needed in the statistical processes and in particular in the data validation phases, for
example:

• Operators for data validations and edit;

• Operators for aggregation, even according to hierarchies;

• Operators for dimensional processing (e.g. projection, filter);

• Operators for statistics (e.g. aggregation, mean, median, variance …).

Integrated approach

• The language is independent of the statistical domain of the data to be processed;

• VTL has no dependencies on the subject matter (the data content);

Documentation for VTL v2.1

3

https://sdmx.org/?page_id=5096

• VTL is able to manipulate statistical data in relation to their structure.

• The language is suitable for the various typologies of data of a statistical environment (for example dimensional
data, survey data, registers data, micro and macro, quantitative and qualitative) and is supported by an
information model (IM) which covers these typologies;

• The IM allows the representation of the various typologies of data of a statistical environment at a
conceptual/logical level (in a way abstract from IT and from the physical storage);

• The various typologies of data are described as much as possible in an integrated way, by means of
common IM artefacts for their common aspects;

• The principle of the Occam’s razor is applied as an heuristic principle in designing the conceptual IM, so
keeping everything as simple as possible or, in other words, unifying the model of apparently different
things as much as possible.

• The language (and its IM) is independent of the phases of the statistical process and usable in any one of them;

• Operators are designed to be independent of the phases of the process, their syntax does not change in
different phases and is not bound to some characteristic restricted to a specific phase (operators’ syntax is
not aware of the phase of the process);

• In principle, all operators are allowed in any phase of the process (e.g. it is possible to use the operators
for data validation not only in the data collection but also, for example, in data compilation for validating the
result of a compilation process; similarly it is possible to use the operators for data calculation, like the
aggregation, not only in data compilation but also in data validation processes);

• Both collected and calculated data are equally permitted as inputs of a calculation, without changes in the
syntax of the operators/expression;

• Collected and calculated data are represented (in the IM) in a homogeneous way with regard to the
metadata needed for calculations.

• The language is designed to be applied not only to SDMX but also to other standards;

• VTL, like any consistent language, relies on a specific information model, as it operates on the VTL IM
artefacts to produce other VTL IM artefacts. In principle, a language cannot be applied as-is to another
information model (e.g. SDMX, DDI, GSIM); this possibility exists only if there is an unambiguous
correspondence between the artefacts of those information models and the VTL IM (that is if their artefacts
correspond to the same mathematical notion);

• The goal of applying the language to more models/standards is achieved by using a very simple, generic
and conceptual Information Model (the VTL IM), and mapping this IM to the models of the different
standards (SDMX, DDI, GSIM, …); to the extent that the mapping is straightforward and unambiguous, the
language can be inherited by other standards (with the proper adjustments);

• To achieve an unambiguous mapping, the VTL IM is deeply inspired by the GSIM IM and uses the same
artefacts when possible 1; in fact, GSIM is designed to provide a formal description of data at business
level against which other information models can be mapped; a very small subset of the GSIM artefacts is
used in the VTL IM in order to keep the model and the language as simple as possible (Occam’s razor
principle); these are the artefacts strictly needed for describing the data involved in Transformations, their
structure and the variables and value domains;

• GSIM artefacts are supplemented, when needed, with other artefacts that are necessary for describing
calculations; in particular, the SDMX model for Transformations is used;

• As mentioned above, the definition of the VTL IM artefacts is based on mathematics and is expressed at
an abstract user level.

Active role for processing

• The language is designed to make it possible to drive in an active way the execution of the calculations (in
addition to documenting them)

• For the purpose above, it is possible either to implement a calculation engine that interprets the VTL and
operates on the data or to rely on already existing IT tools (this second option requires a translation from the
VTL to the language of the IT tool to be used for the calculations)

Documentation for VTL v2.1

4

• The VTL grammar is being described formally using the universally known Backus Naur Form notation (BNF),
because this allows the VTL expressions to be easily defined and processed; the formal description allow the
expressions:

• To be parsed against the rules of the formal grammar; on the IT level, this requires the implementation of a
parser that compiles the expressions and checks their correctness;

• To be translated from the VTL to the language of the IT tool to be used for the calculation; on the IT level,
this requires the implementation of a proper translator;

• To be translated from/to other languages if needed (through the implementation of a proper translator).

• The inputs and the outputs of the calculations and the calculations themselves are artefacts of the IM

• This is a basic property of any robust language because it allows calculated data to be operands of further
calculations;

• If the artefacts are persistently stored, their definition is persistent as well; if the artefacts are
non-persistently stored (used only during the calculation process like input from other systems,
intermediate results, external outputs) their definition can be non-persistent;

• Because the definition of the algorithms of the calculations is based on the definition of their input artefacts
(in particular on the data structure of the input data), the latter must be available when the calculation is
defined;

• The VTL is designed to make the data structure of the output of a calculation deducible from the
calculation algorithm and from the data structure of the operands (this feature ensures that the calculated
data can be defined according to the IM and can be used as operands of further calculations);

• In the IT implementation, it is advisable to automate (as much as possible) the structural definition of the
output of a calculation, in order to enforce the consistency of the definitions and avoid unnecessary
overheads for the definers.

• The VTL and its information model make it possible to check automatically the overall consistency of the
definitions of the calculations, including with respect to the artefact of the IM, and in particular to check:

• the correctness of the expressions with respect to the syntax of the language

• the integrity of the expressions with respect to their input and output artefacts and the corresponding
structures and properties (for example, the input artefacts must exist, their structure components
referenced in the expression must exist, qualitative data cannot be manipulated through quantitative
operators, and so on)

• the consistency of the overall graph of the calculations (for example, in order to avoid that the result of a
calculation goes as input to the same calculation, there should not be cycles in the sequence of
calculations, thus eliminating the risk of producing unpredictable and erroneous results).

Independence of IT implementation

• According to the “user orientation” above, the language is designed so that users are not required to be aware
of the IT solution;

• To use the language, the users need to know only the abstract view of the data and calculations and do
not need to know the aspects of the IT implementation, like the storage structures, the calculation tools
and so on.

• The language is not oriented to a specific IT implementation and permits many possible different
implementations (this property is particularly important in order to allow different institutions to rely on different
IT environments and solutions);

• The VTL provides only for a logical/conceptual layer for defining the data transformations, which applies
on a logical/conceptual layer of data definitions

• The VTL does not prescribe any technical/physical tool or solution, so that it is possible to implement the
VTL by using many different IT tools

• The link between the logical/conceptual layer of the VTL definitions and the IT implementation layer is out
of the scope of the VTL;

Documentation for VTL v2.1

5

• The language does not require to the users the awareness of the storage data structure; the operations on the
data are specified according to the conceptual/logical structure, and so are independent of the storage
structure; this ensures that the storage structure may change without necessarily affecting the conceptual
structure and the user expressions;

• Data having the same conceptual/logical structure may be accessed using the same statements, even if
they have different IT structures;

• The VTL provides commands for data storage and retrieval at a conceptual/logical level; the mapping and
the conversion between the conceptual and the storage structures of the data is left to the IT
implementation (and users need not be aware of it);

• By mapping the logical and the storage data structures, the IT implementations can make it possible to
store/retrieve data in/from different IT data stores (e.g. relational databases, dimensional databases, xml
files, spread-sheets, traditional files);

• The language is not strictly connected with some specific IT tool to perform the calculations (e.g. SQL,
statistical packages, other languages, XML tools…);

• The syntax of the VTL is independent of existing IT calculation tools;

• On the IT level, this may require a translation from the VTL to the language of the IT tool to be used for the
calculation;

• By implementing the proper translations at the IT level, different institutions can use different IT tools to
execute the same algorithms; moreover, it is possible for the same institution to use different IT tools
within an integrated solution (e.g. to exploit different abilities of different tools);

• VTL instructions do not change if the IT solution changes (for example following the adoption of another IT
tool), so avoiding impacts on users as much as possible.

Extensibility, customizability

• The language is made of few “core” constructs, which are the fundamental building blocks into which any
operation can be decomposed, and a “standard library”, which contains a number of standard operators built
from the core constructs; these are the standard parts of the language, which can be extended gradually by the
VTL maintenance body, enriching the available operators according to the evolution of the business needs, so
progressively making the language more powerful;

• Other organizations can define additional operators having a customized behaviour and a functional syntax, so
extending their own library by means of custom-designed operators. As obvious, these additional operators are
not part of the standard VTL library. To exchange VTL definitions with other institutions, the possible custom
libraries need to be pre-emptively shared.

• In addition, it is possible to call external routines of other languages/tools, provided that they are compatible
with the IM; this requisite is aimed to fulfil specific calculation needs without modifying the operators of the
language, so exploiting the power of the other languages/tools if necessary for specific purposes. In this case:

• The external routines should be compatible with, and relate back to, the conceptual IM of the calculations
as for its inputs and outputs, so that the integrity of the definitions is ensured

• The external routines are not part of the language, so their use is subject to some limitations (e.g. it is
impossible to parse them as if they were operators of the language)

• The use of external routines compromises the IT implementation independence, the abstraction and the
user orientation. Therefore external routines should be used only for specific needs and in limited cases,
whereas widespread and generic needs should be fulfilled through the operators of the language;

• Whilst an Organisation adopting VTL can extend it by defining customized parts, on its own total responsibility,
in order to improve the standard language for specific purposes (e.g. for supporting possible algorithms not
permitted by the standard part), it is important that the customized parts remain compliant with the VTL IM and
the VTL fundamentals. Adopting Organizations are totally in charge of any activity for maintaining and sharing
their customized parts. Adopting Organizations are also totally in charge of any possible maintenance activity to
maintain the compliance between their customized parts and the possible VTL future versions.

Documentation for VTL v2.1

6

Language effectiveness

• The language is oriented to give full support to the various typologies of data of a statistical environment (for
example dimensional data, survey data, registers data, micro and macro, quantitative and qualitative, …)
described as much as possible in a coherent way, by means of common IM artefacts for their common aspects,
and relying on mathematical notions, as mentioned above. The various types of statistical data are considered
as mathematical functions, having independent variables (Identifiers) and dependent variables (Measures,
Attributes 2), whose extensions can be thought as logical tables (DataSets) made of rows (Data Points) and
columns (Identifiers, Measures, Attributes).

• The language supports operations on the Data Sets (i.e. mathematical functions) in order to calculate new Data
Sets from the existing ones, on their structure components (Identifiers, Measures, Attributes), on their Data
Points.

• The algorithms are specified by means of mathematical expressions which compose the operands (Data Sets,
Components …) by means of operators (e.g. +,-,*,/,>,<) to obtain a certain result (Data Sets, Components …);

• The validation is considered as a kind of calculation having as an operand the Data Sets to be validated and
producing a Data Set containing information about the result of the validation;

• Calculations on multiple measures are supported by most operators, as well as calculations on the attributes of
the Data Sets and calculations involving missing values;

• The operations are intended to be consistent with the real world historical changes which induce changes of the
artefacts (e.g. of the code lists, of the hierarchies …); however, because different standards may represent
historical changes in different ways, the implementation of this aspect is left to the standards (e.g. SDMX, DDI
…), to the institutions and to the implementers adopting the VTL and therefore the VTL specifications does not
prescribe any particular methodology for representing the historical changes of the artefacts (e.g. versioning,
qualification of time validity);

• Almost all the VTL operators can be nested, meaning that in the invocation of an operator any operand can be
the result of the invocation of other operators which calculate it;

• The results of the calculations can be permanently stored or not, according to the needs.

1 See the section “Relationships between VTL and GSIM”

2 The Measures bear information about the real world and the Attributes about the Data Set or
some part of it.

Evolution of VTL 2.0 in respect to VTL 1.0
Important contributions gave origin to the work that brought to the VTL 2.0 and now to this VTL 2.1 version.

Firstly, it was not possible to acknowledge immediately - in VTL 1.0 - all of the remarks received during the 1.0 public
review. Secondly, the publication of VTL 1.0 triggered the launch of other reviews and proofs of concepts, by several
institutions and organizations, aimed at assessing the ability of VTL of supporting properly their real use cases.

The suggestions coming from these activities had a fundamental role in designing the new version of the language.

The main improvements are described below.

The Information Model

The VTL Information Model describes the artefacts that VTL manipulates (i.e. it provides generic models for defining
Data and their structures, Variables, Value Domains and so on) and how the VTL is used to define validations and
transformations (i.e. a generic model for Transformations).

In VTL 2.0, some mistakes of VTL 1.0 have been corrected and new kinds of artefacts have been introduced in order
to make the representation more complete and to facilitate the mapping with the artefacts of other standards (e.g.
SDMX, DDI …).

As already said, VTL is intended to operate at logical/conceptual level and independently of the implementation,
actually allowing different implementations. For this reason, VTL-IM provides only for a core abstract view of data
and calculations and leaves out the implementation aspects.

Documentation for VTL v2.1

7

Some other aspects, even if logically related to the representation of data and calculations, are intentionally left out
because they can depend on the actual implementation too. Some of them are mentioned hereinafter (for example
the representation of real-world historical changes that impact model artefacts).

The operational metadata needed for supporting real processing systems are also out of VTL scope.

The implementation of the VTL-IM abstract model artefacts needs to take into account the specificities of the
standards (like SDMX, DDI …) and the information systems for which it is used.

Structural artefacts and reusable rules

The structural artefacts of the VTL IM (e.g. a set of code items) as well as the artefacts of other existing standards
(like SDMX, DDI, or others) are intrinsically reusable. These so-called “structural” artefacts can be referenced as
many times as needed.

In order to empower the capability of reusing definitions, a main requirement for VTL 2.0 has been the introduction of
reusable rules (for example, validation or aggregation rules defined once and applicable to different cases).

The reusable rules are defined through the VTL definition language and applied through the VTL manipulation
language.

The core language and the standard library

VTL 1.0 contains a flat list of operators, in principle not related to one another. A main suggestion for VTL 2.0 was to
identify a core set of primitive operators able to express all of the other operators present in the language. This was
done in order to specify the semantics of available operators more formally, avoiding possible ambiguities about their
behaviour and fostering coherent implementations. The distinction between ‘core’ and ‘standard’ library is not
important to the VTL users but is largely of interest of the VTL technical implementers.

The suggestion above has been acknowledged, so VTL 2.0 manipulation language consists of a core set of primitive
operators and a standard library of derived operators, definable in term of the primitive ones. The standard library
contains essentially the VTL 1 operators (possibly enhanced) and the new operators introduced with VTL 2.0 (see
below).

In particular, the VTL core includes an operator called “join” which allows extending the common scalar operations to
the Data Sets. .

The user defined operators

VTL 1.0 does not allow defining new operators from existing ones, and thus the possible operators are
predetermined. Besides, thanks to the core operators and the standard library, VTL 2.0 allows to define new
operators (also called “user-defined operators”) starting from existing ones. This is achieved by means of a specific
statement of the VTL-DL (the “define operator” statement, see the Reference Manual).

This a main mechanism to enforce the requirements of having an extensible and customizable language and to
introduce custom operators (not existing in the standard library) for specific purposes.

As obvious, because the user-defined operators are not part of the standard library, they are not standard VTL
operators and are applicable only in the context in which they have been defined. In particular, if there is the need of
applying user-defined operators in other contexts, their definitions need to be pre-emptively shared.

The VTL Definition Language

VTL 1.0 contains only a manipulation language (VTL-ML), which allows specifying the transformations of the VTL
artefacts by means of expressions.

A VTL Definition Language (VTL-DL) has been introduced in version 2.0.

In fact, VTL 2.0 allows reusable rules and user-defined operators, which do not exist in VTL 1.0 and need to be
defined beforehand in order to be invoked in the expressions of the VTL manipulation language. The VTL-DL
provides for their definition.

Second, VTL 1.0 was initially intended to work on top of an existing standard, such as SDMX, DDI or other, and
therefore the definition of the artefacts to be manipulated (Data and their structures, Variables, Value Domains and
so on) was assumed to be made using the implementing standards and not VTL itself.

Documentation for VTL v2.1

8

During the work for the VTL 1.1 draft version, it was proposed to make the VTL definition language able to define
also those VTL-IM artefacts that have to be manipulated. A draft version of a possible artefacts definition language
was included in VTL 1.1 public consultation, held until the beginning of 2017. The comments received and the
following analysis evidenced that the artefact definition language cannot include the aspects that are left out of the IM
(for example the representation of the historical changes of the real world impacting the model artefacts) yet are:

i. needed in the implementations;

ii
.

influenced by other implementation-specific aspects;

ii
i.

in real applications, bound to be extended by means of other context-related metadata and adapted to the
specific environment.

In conclusion, the artefact definition language has been excluded from this VTL version and the opportunity of
introducing it will be further explored in the near future.

In respect to VTL 1.0, VTL 2.0 definition language (VTL-DL) is completely new (there is no definition language in VTL
1.0).

The functional paradigm

In the VTL Information Model, the various types of statistical data are considered as mathematical functions, having
independent variables (Identifiers) and dependent variables (Measures, Attributes), whose extensions can be
thought of as logical tables (Data Sets) made of rows (Data Points) and columns (Identifiers, Measures, Attributes).
Therefore, the main artefacts to be manipulated using VTL are the logical Data Sets, i.e. first-order mathematical
functions 3.

Accordingly, VTL uses a functional programming paradigm, meaning a paradigm that treats computations as the
evaluation of higher-order mathematical functions 4, which manipulate the first-order ones (i.e., the logical Data
Sets), also termed “operators” or “functionals”. The functional paradigm avoids changing-state and mutable data and
makes use of expressions for defining calculations.

It was observed, however, that the functional paradigm was not sufficiently achieved in VTL 1.0 because in some
particular cases a few operators could have produced non- functional results. In effects, even if this regarded only
temporary results (not persistent), in specific cases, this behaviour could have led to unexpected results in the
subsequent calculation chain.

Accordingly, some VTL 1.0 operators have been revised in order to enforce their functional behaviour.

The operators

The VTL 2.0 manipulation language (VTL-ML) has been upgraded in respect to the VTL 1.0. In fact VTL 2.0
introduces a number of new powerful operators, like the analytical and the aggregate functions, the data points and
hierarchy checks, various clauses and so on, and improve many existing operators, first of all the “join”, which
substitutes the “merge” of the VTL 1.0. The complete list of the VTL 2.0 operators is in the reference manual.

Some rationalisations have brought to the elimination of some operators whose behaviour can be easily reproduced
using other operators. Some examples are the “attrcalc” operator which is now simply substituted by the already
existing “calc” and the “query syntax” that was allowed for accessing a subset of Data Points of a Data Set, which on
one side was not coherent with the rest of the VTL syntax conventions and on the other side can be easily
substituted by the “filter” operator.

Even in respect to the draft VTL 1.1 many rationalisations have been applied, also following the very numerous
comments received during the relevant public consultation.

Changes for version 2.1

The VTL 2.1 version is a minor one and contains the following changes in respect to 2.0:

i. typos and errors in the text and/or in the examples have been fixed;

ii
.

new operators have been defined: time operators (datediff, dateadd, year/month/quarter/dayofmonth/dayofyear,
daystoyear, daystomonth, durationtodays), case operator (simple extension of if-then-else), random operator
(generating a random decimal number >= 0 and < 1)

Documentation for VTL v2.1

9

ii
i.

some changes have been introduced: the cast operator will have only explicit or implicit mask (no optional mask
not allowed), some assumptions have been taken in the ordering for some use cases, the default window
clause for analytic operators has been changed to be compliant with the SQL standard behaviour.

A new document (Technical Notes) has been added to the documentation to support VTL implementation.

3 A first-order function is a function that does not take other functions as arguments and does not
provide another function as result.

4 A higher-order function is a function that takes one or more other functions as arguments and/or
provides another function as result.

VTL Information Model

Introduction

The VTL Information Model (IM) is a generic model able to describe the artefacts that VTL can manipulate, i.e. to
give the definition of the artefact structure and relationships with other artefacts.

The knowledge of the artefacts definition is essential for parsing VTL expressions and performing VTL operations
correctly. Therefore, it is assumed that the referenced artefacts are defined before or at the same time the VTL
expressions are defined.

The results of VTL expressions must be defined as well, because it must always be possible to take these results as
operands of further expressions to build a chain of transformations as complex as needed. In other words, VTL is
meant to be “closed”, meaning that operands and results of the VTL expressions are always artefacts of the VTL IM.
As already mentioned, the VTL is designed to make it possible to deduce the data structure of the result from the
calculation algorithm and the data structure of the operands.

VTL can manage persistent or temporary artefacts, the former stored persistently in the information system, the latter
only used temporarily. The definition of the persistent artefact must be persistent as well, while the definition of
temporary artefacts can be temporary 5.

The VTL IM provides a formal description at business level of the artefacts that VTL can manipulate, which is the
same purpose as the Generic Statistical Information Model (GSIM) with a broader scope. In fact, the VTL Information
Model uses GSIM artefacts as much as possible (GSIM 2.0 version) 6. Note that the description of the GSIM 2.0
classes and relevant definitions can be consulted in the “Clickable GSIM” of the UNECE site 7. However, the detailed
mapping between the VTL IM and the IMs of the other standards is out of the scope of this document and is left to
the competent bodies of the other standards 8.

The VTL IM provides for a model at a logical/conceptual level, which is independent of the implementation and
allows different possible implementations.

The VTL IM provides for an abstract view of the core artefacts used in the VTL calculations and intentionally leaves
out implementation aspects. Some other aspects, even if logically related to the representation of data and
calculations, are also left out because they can depend on the actual implementation too (for example, the textual
descriptions of the VTL artefacts, the representation of the historical changes of the real world).

The operational metadata needed for supporting real processing systems are also left out from the VTL scope (for
example the specification of the way data are managed, i.e. collected, stored, validated, calculated/estimated,
disseminated …).

Therefore, the VTL IM cannot autonomously support real processing systems, and for this purpose needs to be
properly integrated and adapted, also adding more metadata (e.g., other classes of artefacts, properties of the
artefacts, relationships among artefacts …).

Even the possible VTL implementations in other standards (like SDMX and DDI) would require proper adjustments
and improvements of the IM described here.

The VTL IM is inspired to the modelling approach that consists in using more modelling levels, in which a model of a
certain level models the level below and is an instance of a model of the level above.

For example, assuming conventionally that the level 0 is the level of the real world to be modelled and ignoring
possible levels higher than the one of the VTL IM, the VTL modelling levels could be described as follows:

Level 0 – the real world

Documentation for VTL v2.1

10

Level 1 – the extensions of the data that model some aspect of the real world. For example, the content of the
data set “population from United Nations”:

Year Country Population

2016 China 1,403,500,365

2016 India 1,324,171,354

2016 USA 322,179,605

…

2017 China 1,409,517,397

2017 India 1,339,180.127

2017 USA 324,459,463

…

Level 2 – the definitions of specific data structures (and relevant transformations) which are the model of the
level 1. An example: the data structure of the data set “population from United Nations” has one measure
component called “population” and two identifier components called Year and Country.

Level 3 – the VTL Information Model, i.e. the generic model to which the specific data structures (and relevant
transformations) must conform. An example of IM rule about the data structure: a Data Set may be structured by
just one Data Structure, a Data Structure may structure any number of Data Sets.

A similar approach is very largely used, in particular in the information technology and for example by the Object
Management Group 9, even if the terminology and the enumeration of the levels is different. The main
correspondences are:

VTL Level 1 (extensions) – OMG M0 (instances)

VTL Level 2 (definitions) – OMG M1 (models)

VTL Level 3 (information model) – OMG M2 (metamodels)

Often the level 1 is seen as the level of the data, the level 2 of the metadata and the level 3 of the meta-metadata,
even if the term metadata is too generic and somewhat ambiguous. In fact, “metadata” is any data describing
another data, while “definition” is a particular metadata which is the model of another data. For example, referring to
the example above, a possible other data set which describes how the population figures are obtained is certainly a
metadata, because it gives information about another data (the population data set), but it is not at all its definition,
because it does not describe the information structure of the population data set.

The VTL IM is illustrated in the following sections.

The first section describes the generic model for defining the statistical data and their structures, which are the
fundamental artefacts to be transformed. In fact, the ultimate goal of the VTL is to act on statistical data to produce
other statistical data.

In turn, data items are characterized in terms of variables, value domains, code items and similar artefacts. These
are the basic bricks that compose the data structures, fundamental to understand the meaning of the data, ensuring
harmonization of different data when needed, validating and processing them. The second section presents the
generic model for these kinds of artefacts.

Finally, the VTL transformations, written in the form of mathematical expressions, apply the operators of the
language to proper operands in order to obtain the needed results. The third section depicts the generic model of the
transformations.

Generic Model for Data and their structures

This Section provides a formal model for the structure of data as operated on by the Validation and Transformation
Language (VTL).

For each Unit (e.g. a person) or Group of Units of a Population (e.g. groups of persons of a certain age and civil
status), identified by means of the values of the independent variables (e.g. either the “person id” or the age and the
civil status), a mathematical function provides for the values of the dependent variables, which are the properties to
be known (e.g. the revenue, the expenses …).

Documentation for VTL v2.1

11

A mathematical function can be seen as a logical table made of rows and columns. Each column holds the values
of a variable (either independent or dependent); each row holds the association between the values of the
independent variables and the values of the dependent variables (in other words, each row is a single “point” of the
function).

In this way, the manipulation of any kind of data (unit and dimensional) is brought back to the manipulation of very
simple and well-known objects, which can be easily understood and managed by users. According to these
assumptions, there would no longer be the need of distinguishing between unit and dimensional data, and in fact
VTL does not introduces such a distinction at all. Nevertheless, even if such a distinction is not part of the VTL IM,
this aspect is illustrated below in this document in order to make it easier to map the VTL IM to the GSIM IM and the
DDI IM, which have such a distinction.

Starting from this assumption, each mathematical function (logical table) may be defined having Identifier, Measure
and Attribute Components. The Identifier components are the independent variables of the function, the Measures
and Attribute Components are the dependent variables. Obviously, the GSIM artefacts “Data Set” and “Data Set
Structure” have to be strictly interpreted as logical artefacts on a mathematical level, not necessarily corresponding
to physical data sets and physical data structures.

In order to avoid any possible misunderstanding with respect to SDMX, also take note that the VTL Data Set in
general does not correspond to the SDMX Dataset. In fact, a SDMX dataset is a physical set of data (the data
exchanged in a single interaction), while the VTL Data Set is a logical set of data, in principle independent of its
possible physical representation and handling (like the exchange of part of it). The right mapping is between the VTL
Data Set and the SDMX Dataflow.

Documentation for VTL v2.1

12

Data model diagram

An error has occured : java.lang.IllegalStateException
United we stand

PlantUML (1.2025.9) has crashed.

This version of PlantUML is 141 days old, so you should
consider upgrading from https://plantuml.com/download
Diagram size: 16 lines / 588 characters.

PlantUML (1.2025.9) cannot parse result from dot/GraphViz.

Please go to https://plantuml.com/graphviz-dot to check your GraphViz version.

Java Runtime: OpenJDK Runtime Environment
JVM: OpenJDK 64-Bit Server VM
Default Encoding: UTF-8
Language: en
Country: null

PLANTUML_LIMIT_SIZE: 4096

This may be caused by :
- a bug in PlantUML
- a problem in GraphViz

You should send this diagram and this image to plantuml@gmail.com or
post to https://plantuml.com/qa to solve this issue.
You can try to turn around this issue by simplifing your diagram.

java.lang.IllegalStateException
net.sourceforge.plantuml.svek.DotStringFactory.solve(DotStringFactory.java:341)
net.sourceforge.plantuml.svek.GraphvizImageBuilder.buildImage(GraphvizImageBuilder.java:285)
net.sourceforge.plantuml.svek.CucaDiagramFileMakerSvek.createFileInternal(CucaDiagramFileMakerSvek.java:104)
net.sourceforge.plantuml.svek.CucaDiagramFileMakerSvek.createFile(CucaDiagramFileMakerSvek.java:70)
net.atmp.CucaDiagram.exportDiagramInternal(CucaDiagram.java:489)
net.sourceforge.plantuml.classdiagram.ClassDiagram.exportDiagramInternal(ClassDiagram.java:85)
net.sourceforge.plantuml.UmlDiagram.exportDiagramNow(UmlDiagram.java:119)
net.sourceforge.plantuml.AbstractPSystem.exportDiagram(AbstractPSystem.java:220)
net.sourceforge.plantuml.SourceStringReader.outputImage(SourceStringReader.java:189)
net.sourceforge.plantuml.Pipe.generateDiagram(Pipe.java:108)
net.sourceforge.plantuml.Pipe.managePipe(Pipe.java:99)
net.sourceforge.plantuml.Run.main(Run.java:180)

Diagram source: (Use http://zxing.org/w/decode.jspx to decode the qrcode)

White box: same artefact as in GSIM 1.1

Light grey box: similar to GSIM 1.1

Documentation for VTL v2.1

13

Explanation of the Diagram

Data Set: a mathematical function (logical table) that describes some properties of some groups of units of a
population. In general, the groups of units may be composed of one or more units. For unit data, each group is
composed of a single unit. For dimensional data, each group may be composed of any number of units. A VTL Data
Set is considered as a logical set of observations (Data Points) having the same logical structure and the same
general meaning, independently of the possible physical representation or storage. Between the VTL Data Sets and
the physical datasets there can be relationships of any cardinality: for example, a VTL Data Set may be stored either
in one or in many physical data sets, as well as many VTL Data Sets may be stored in the same physical datasets
(or database tables). The mapping between the VTL logical artefacts and the physical artefacts is left to the VTL
implementations and is out of scope of this document.

Data Point: a single value of the function, i.e. a single association between the values of the independent variables
and the values of the dependent variables. A Data Point corresponds to a row of the logical table that describes the
function; therefore, the extension of the function (Data Set) is a set of Data Points. Some Data Points of the function
can be unknown (i.e. missing or null), for example, the possible ones relevant to future dates. The single Data Points
do not need to be individually defined, because their definition is the definition of the function (i.e. the Data Set
definition).

Data Structure: the structure of a mathematical function, having independent and dependent variables. The
independent variables are called “Identifier components”, the dependent variables are called either “Measure
Components” or “Attribute Components”. The distinction between Measure and Attribute components is conventional
and essentially based on their meaning: the Measure Components give information about the real world, while the
Attribute components give information about the function itself.

Data Structure Component: any component of the data structure, which can be either an Identifier, or a Measure,
or an Attribute Component.

Identifier Component (or simply Identifier): a component of the data structure that is an independent variable of
the function.

Measure Component (or simply Measure): a component of the data structure that is a dependent variable of
the function and gives information about the real world.

Attribute Component (or simply Attribute): a component of the data structure that is a dependent variable of
the function and gives information about the function itself. In case the automatic propagation of the Attributes is
Attributes can be further classified in normal Attributes (not automatically propagated) and Viral Attributes
(automatically propagated).

There can be from 0 to N Identifiers in a Data Structure. A Data Set having no identifiers can contain just one Data
Point, whose independent variables are not explicitly represented.

There can be from 0 to N Measures in a Data Structure. A Data Set without Measures is allowed because the
Identifiers can be considered as functional dependent from themselves (so having also the role of Measure). In an
equivalent way, the combinations of values of the Identifiers can be considered as “true” (i.e. existing), therefore it
can be thought that there is an implicit Boolean measure having value “TRUE” for all the Data Points 10.

The extreme case of a Data Set having no Identifiers, Measures and Attributes is allowed. A Data Set of this kind
contains just one scalar Value whose meaning is specified only through the Data Set name. As for the VTL
operations, these Data Sets are managed like the scalar Values.

Note that the VTL may manage Measure and Attribute Components in different ways, as explained in the section
“The general behaviour of operations on datasets” below, therefore the distinction between Measures and Attributes
may be significant for the VTL.

Represented Variable: a characteristic of a statistical population (e.g. the country of birth) represented in a specific
way (e.g. through the ISO numeric country code). A represented variable may contribute to define any number of
Data Structure Components.

Functional Integrity

The VTL data model requires a functional dependency between the Identifier Components and all the other
Components of a Data Set. It follows that a Data Set can also be seen as a tabular structure with a finite number of
columns (which correspond to its Components) and rows (which correspond to its individual Data Points), in fact for
each combination of values of the Identifier Components’ columns (which identify an individual Data Point), there is
just one value for each Measure and Attribute (contained in the corresponding columns).

Documentation for VTL v2.1

14

The functional dependency translates into the following functional integrity requirements:

• Each Component has a distinct name in the Data Structure of the Data Set and contains one scalar value for
each Data Point.

• All the Identifier Components of the Data Set must contain a significant value for all the Data Points (i.e. such
value cannot be unknown (“NULL”)).

• In a Data Set there cannot exist two or more Data Points having the same values for all the Identifier
Components (i.e. the same Data Point key).

• When a Measure or Attribute Component has no significant value (i.e. “NULL”) for a Data Point, it is considered
unknown for that Data Point.

• When a Data Point is missing (i.e. a possible combination of values of the independent variables is missing), all
its Measure and Attribute Components are by default considered unknown (unless otherwise specified).

The VTL expects the input Data Sets to be functionally integral and is designed to ensure that the resulting Data Set
are functionally integral too.

Examples

As a first simple example of Data Sets seen as mathematical functions, let us consider the following table:

Production of the American Countries

Ref.Date Country Meas.Name Meas.Value Status

2013 Canada Population 50 Final

2013 Canada GNP 600 Final

2013 USA Population 250 Temporary

2013 USA GNP 2400 Final

… … … … …

2014 Canada Population 51 Unavailable

2014 Canada GNP 620 Temporary

… … … … …

This table is equivalent to a proper mathematical function: in fact, it fulfils the functional integrity requirements above.
The Table can be defined as a Data Set, whose name can be “Production of the American Countries”. Each row of
the table is a Data Point belonging to the Data Set. The Data Structure of this Data Set has five Data Structure
Components:

• Reference Date (Identifier Component)

• Country (Identifier Component)

• Measure Name (Identifier Component - Measure Identifier)

• Measure Value (Measure Component)

• Status (Attribute Component)

As a second example, let us consider the following physical table, in which the symbol “###” denotes cells that are
not allowed to contain a value or contain the “NULL” value.

Institutional Unit Data

Row
Type I.U. ID Ref. Date I.U. Name I.U. Sector Assets Liabilities

I A ### AAAAA Private ### ###

II A 2013 ### ### 1000 800

II A 2014 ### ### 1050 750

I B ### BBBBB Public ### ###

Documentation for VTL v2.1

15

II B 2013 ### ### 1200 900

II B 2014 ### ### 1300 950

I C ### CCCCC Private ### ###

II C 2013 ### ### 750 900

II C 2014 ### ### 800 850

… … … … … … …

This table does not fulfil the functional integrity requirements above because its rows (i.e. the Data Points) either
have different structures (in term of allowed columns) or have null values in the Identifiers. However, it is easy to
recognize that there exist two possible functional structures (corresponding to the Row Types I and II), so that the
original table can be split in the following ones:

Row Type I - Institutional Unit register

I.U. ID I.U. Name I.U. Sector

A AAAAA Private

B BBBBB Public

C CCCCC Private

… … …

Row Type II - Institutional Unit Assets and Liabilities

I.U. ID Ref.Date Assets Liabilities

A 2013 1000 800

A 2014 1050 750

B 2013 1200 900

B 2014 1300 950

C 2013 750 900

C 2014 800 850

… … … …

Each one of these two tables corresponds to a mathematical function and can be represented like in the first
example above. Therefore, these would be two distinct logical Data Sets according to the VTL IM, even if stored in
the same physical table.

In correspondence to one physical table (the former), there are two logical tables (the latter), so that the definitions
will be the following ones:

VTL Data Set 1: Record type I - Institutional Units register

Data Structure 1:

• I.U. ID (Identifier Component)

• I.U. Name (Measure Component)

• I.U. Sector (Measure Component)

VTL Data Set 2: Record type II - Institutional Units Assets and Liabilities

Data Structure 2:

• I.U. ID (Identifier Component)

• Reference Date (Identifier Component)

• Assets (Measure Component)

• Liabilities (Measure Component)

Documentation for VTL v2.1

16

These examples clarify the meaning of “logical” table or Data Set in VTL, that is a set of data which can be
considered as the extensional form of a mathematical function, whichever technical format is used, regardless it is
stored or not and, in case, wherever it is stored.

In the example above, one physical data set corresponds to more than one logical VTL Data Sets, with a 1 to many
correspondence. In the general case, between physical and logical data sets there can be any correspondence (1 to
1, 1 to many, many to 1, many to many).

The data artefacts

The list of the VTL artefacts related to the manipulation of the data is given here, together with the information that
the VTL may need to know about them 11.

For the sake of simplicity, the names of the artefacts can be abbreviated in the VTL manuals (in particular the parts
of the names shown between parentheses can be omitted).

As already mentioned, this list provides an abstract view of the core metadata needed for the manipulation of the
data structures but leaves out implementation and operational aspects. For example, textual descriptions of the
artefacts are left out, as well as any specification of temporal validity of the artefacts, procedural metadata
(specification of the way data are processed, i.e., collected, stored, validated, calculated/estimated, disseminated …)
and so on. In order to support real systems, the implementers can conveniently adjust this model to their
environments and integrate it by adding additional metadata (e.g. other properties of the artefacts, other classes of
artefacts, other relationships among artefacts …).

Data Set

Data Set name name of the Data Set

Data Structure name reference to the data structure of the Data Set

Data Structure

Data Structure name name of the Data Structure (the Structure Components
are specified in the following artefact)

(Data) Structure Component

Data Structure name the data structure, which the Data Structure
Component belongs to

Component name the name of the Component

Component Role IDENTIFIER or MEASURE or ATTRIBUTE (or also
VIRAL ATTRIBUTE if the automatic propagation is
supported)

Represented Variable the Represented Variable which defines the
Component (see also below)

The Data Points have the same information structure of the Data Sets they belong to; in fact they form the
extensions of the relevant Data Sets; VTL does not require defining them explicitly.

Generic Model for Variables and Value Domains

This Section provides a formal model for the Variables, the Value Domains, their Values and the possible (Sub)Sets
of Values. These artefacts can be referenced in the definition of the VTL Data Structures and as parameters of some
VTL Operators.

Documentation for VTL v2.1

17

Variable and Value Domain model diagram

Documentation for VTL v2.1

18

An error has occured : java.lang.IllegalStateException
I can't lie to you about your chances, but... you have my sympathies.

PlantUML (1.2025.9) has crashed.

This version of PlantUML is 141 days old, so you should
consider upgrading from https://plantuml.com/download
Diagram size: 44 lines / 1939 characters.

PlantUML (1.2025.9) cannot parse result from dot/GraphViz.

Please go to https://plantuml.com/graphviz-dot to check your GraphViz version.

Java Runtime: OpenJDK Runtime Environment
JVM: OpenJDK 64-Bit Server VM
Default Encoding: UTF-8
Language: en
Country: null

PLANTUML_LIMIT_SIZE: 4096

This may be caused by :
- a bug in PlantUML
- a problem in GraphViz

You should send this diagram and this image to plantuml@gmail.com or
post to https://plantuml.com/qa to solve this issue.
You can try to turn around this issue by simplifing your diagram.

java.lang.IllegalStateException
net.sourceforge.plantuml.svek.DotStringFactory.solve(DotStringFactory.java:341)
net.sourceforge.plantuml.svek.GraphvizImageBuilder.buildImage(GraphvizImageBuilder.java:285)
net.sourceforge.plantuml.svek.CucaDiagramFileMakerSvek.createFileInternal(CucaDiagramFileMakerSvek.java:104)
net.sourceforge.plantuml.svek.CucaDiagramFileMakerSvek.createFile(CucaDiagramFileMakerSvek.java:70)
net.atmp.CucaDiagram.exportDiagramInternal(CucaDiagram.java:489)
net.sourceforge.plantuml.classdiagram.ClassDiagram.exportDiagramInternal(ClassDiagram.java:85)
net.sourceforge.plantuml.UmlDiagram.exportDiagramNow(UmlDiagram.java:119)
net.sourceforge.plantuml.AbstractPSystem.exportDiagram(AbstractPSystem.java:220)
net.sourceforge.plantuml.SourceStringReader.outputImage(SourceStringReader.java:189)
net.sourceforge.plantuml.Pipe.generateDiagram(Pipe.java:108)
net.sourceforge.plantuml.Pipe.managePipe(Pipe.java:99)
net.sourceforge.plantuml.Run.main(Run.java:180)

Diagram source: (Use http://zxing.org/w/decode.jspx to decode the qrcode)

Documentation for VTL v2.1

19

White box: same as in GSIM 1.1

Light grey: similar to GSIM 1.1

Dark grey additional detail (in respect to GSIM 1.1)

Explanation of the Diagram

The VTL IM distinguishes explicitly between Value Domains and their (Sub)Sets in order to allow different Data Set
Components relevant to the same aspect of the reality (e.g. the geographic area) to share the same Value Domain
and, at the same time, to take values in different Subsets of it. This is essential for VTL for several operations and in
particular for validation purposes. For example, it may happen that the same Represented Variable, say the “place of
birth”, in a Data Set takes values in the Set of the European Countries, in another one takes values in the set of the
African countries, and so on, even at different levels of details (e.g. the regions, the cities). The definition of the exact
Set of Values that a Data Set Component can take may be very important for VTL, in particular for validation
purposes. The specification of the Set of Values that the Data Set Components may assume is equivalent, on the
mathematical plane, to the specification of the domain and the co-domain of the mathematical function
corresponding to the Data Set.

Data Set: see the explanation given in the previous section (Generic Model for Data and their structures).

Data Set Component: a component of the Data Set, which matches with just one Data Structure Component of the
Data Structure of such a Data Set and takes values in a (sub)set of the corresponding Value Domain 12; this (sub)set
of allowed values may either coincide with the set of all the values belonging to the Value Domain or be a proper
subset of it. In respect to a Data Structure Component, a Data Set Component bears the important additional
information of the set of allowed values of the Component, which can be different Data Set by Data Set even if their
data structure is the same.

Data Structure: a Data Structure; see the explanation already given in the previous section (Generic Model for Data
and their structures)

Data Structure Component: a component of a Data Structure; see the explanation already given in the previous
section (Generic Model for Data and their structures). A Data Structure Component is defined by a Represented
Variable.

Represented Variable: a characteristic of a statistical population (e.g. the country of birth) represented in a specific
way (e.g. through the ISO code). A represented variable may take value in (or may be measured by) just one Value
Domain.

Value Domain: the domain of allowed values for one or more represented variables. Because of the distinction
between Value Domain and its Value Domain Subsets, a Value Domain is the wider set of values that can be of
interest for representing a certain aspect of the reality like the time, the geographical area, the economic sector and
so on. As for the mathematical meaning, a Value Domain is meant to be the representation of a “space of events”
with the meaning of the probability theory 13. Therefore, a single Value of a Value Domain is a representation of a
single “event” belonging to this space of events.

Described Value Domain: a Value Domain defined by a criterion (e.g. the domain of the positive integers).

Enumerated Value Domain: a Value Domain defined by enumeration of the allowed values (e.g. domain of ISO
codes of the countries).

Code List: the list of all the Code Items belonging to an enumerated Value Domain, each one representing a
single “event” with the meaning of the probability theory. As for its mathematical meaning, this list is unique for a
Value Domain, cannot contain repetitions (each Code Item can be present just once) and cannot contain
ambiguities (each Code Item must have a univocal meaning, i.e., must represent a single event of the space of
the events). The multiplicity of the relationship with the Enumerated Value Domain which is 1:1 because, as it
happens for the Data Set, the VTL considers the Code List as an artefact at a logical level, corresponding to its
mathematical meaning. A logical VTL Code List, however, may be obtained as the composition of more physical
lists of codes if needed: the mapping between the logical and the physical lists is out of scope of this document
and is left to the implementations, provided that the basic conceptual properties of the VTL Code List are
ensured (unicity, no repetitions, no ambiguities). In practice, as for the VTL IM, the Code List artefact matches
1:1 with the Enumerated Value Domain artefact, therefore they can be considered as the same artefact.

Code Item: an allowed Value of an enumerated Value Domain. A Code Item is the association of a Value with the
relevant meaning. An example of Code Item is a single country ISO code (the Value) associated to the country it
represents (the category). As for the mathematical meaning, a Code Item is the representation of an “event” of a

Documentation for VTL v2.1

20

space of events (i.e. the relevant Value Domain), according to the notions of “event” and “space of events” of the
probability theory (see the note above).

Value: an allowed value of a Value Domain. Please note that on a logical / mathematical level, both the Described
and the Enumerated Value Domains contain Values, the only difference is that the Values of the Enumerated Value
Domains are explicitly represented by enumeration, while the Values of the Described Value Domains are implicitly
represented through a criterion.

The following artefacts are aimed at representing possible subsets of the Value Domains. This is needed for
validation purposes, because very often not all the values of the Value Domain are allowed in a Data Structure
Component, but only a subset of them (e.g. not all the countries but only the European countries). This is needed
also for transformation purposes, for example to filter the Data Points according to a subset of Values of a certain
Data Structure Component (e.g. extract only the European Countries from some data relevant to the World
Countries).

Value Domain Subset (or simply Set): a subset of Values of a Value Domain. Hereinafter a Value Domain Subset is
simply called Set, because it can be any set of Values belonging to the Value Domain (even the set of all the values
of the Value Domain).

Described Value Domain Subset (or simply Described Set): a described (defined by a criterion) subset of
Values of a Value Domain (e.g. the countries having more than 100 million inhabitants, the integers between 1
and 100).

Enumerated Value Domain Subset (or simply Enumerated Set): an enumerated subset of a Value Domain
(e.g. the enumeration of the European countries).

Set List: the list of all the Values belonging to an Enumerated Set (e.g. the list of the ISO codes of the European
countries), without repetitions (each Value is present just once). As obvious, these Values must belong to the
Value Domain of which the Set is a subset. The Set List enumerates the Values contained in the Set (e.g. the
European country codes), without the associated categories (e.g. the names of the countries), because the latter
are already maintained in the Code List / Code Items of the relevant Value Domain (which enumerates all the
possible Values with the associated categories). In practice, as for the VTL IM, the Set List artefact coincides 1:1
with the Enumerated Set artefact, therefore they can be considered as the same artefact.

Set Item: an allowed Value of an enumerated Set. The Value must belong to the same Value Domain the Set
belongs to. Each Set Item refers to just one Value and just one Set. A Value can belong to any number of Sets. A Set
can contain any number of Values.

Relations and operations between Code Items

The VTL allows the representation of logical relations between Code Items, considered as events of the probability
theory and belonging to the same enumerated Value Domain (space of events). The VTL artefact that allows
expressing the Code Item Relations is the Hierarchical Ruleset, which is described in the reference manual.

As already explained, each Code Item is the representation of an event, according to the notions of “event” and
“space of events” of the probability theory. The relations between Code Items aim at expressing the logical
implications between the events of a space of events (i.e. in a Value Domain). The occurrence of an event, in fact,
may imply the occurrence or the non-occurrence of other events. For example:

• The event UnitedKingdom implies the event Europe (e.g. if a person lives in UK he/she also lives in Europe),
meaning that the occurrence of the former implies the occurrence of the latter. In other words, the geo-area of
UK is included in the geo-area of the Europe.

• The events Belgium, Luxembourg, Netherlands are mutually exclusive (e.g. if a person lives in one of these
countries he/she does not live in the other ones), meaning that the occurrence of one of them implies the
non-occurrence of the other ones (Belgium AND Luxembourg = impossible event; Belgium AND Netherlands =
impossible event; Luxembourg and Netherlands = impossible event). In other words, these three geo-areas do
not overlap.

• The occurrence of one of the events Belgium, Netherlands or Luxembourg (i.e. Belgium OR Netherlands OR
Luxembourg) implies the occurrence of the event Benelux (e.g. if a person lives in one of these countries
he/she also lives in Benelux) and vice-versa (e.g. if a person lives in Benelux, he/she lives in one of these
countries). In other words, the union of these three geo-areas coincides with the geo-area of the Benelux.

The logical relationships between Code Items are very useful for validation and transformation purposes.
Considering for example some positive and additive data, like for example the population, from the relationships
above it can be deduced that:

Documentation for VTL v2.1

21

• The population of United Kingdom should be lower than the population of Europe.

• There is no overlapping between the populations of Belgium, Netherlands and Luxembourg, so that these
populations can be added in order to obtain aggregates.

• The sum of the populations of Belgium, Netherlands and Luxembourg gives the population of Benelux.

A Code Item Relation is composed by two members, a 1st (left) and a 2nd (right) member. The envisaged types of
relations are: “is equal to” (=), “implies” (<), “implies or is equal to” (<=), “is implied by” (>), and “is implied by or is
equal to” (>=). “Is equal to” means also “implies and is implied”. For example:

UnitedKingdom < Europe means (UnitedKingdom implies Europe)

In other words, this means that if a point of space belongs to United Kingdom it also belongs to Europe.

The left members of a Relation is a single Code Item. The right member can be either a single Code Item, like in the
example above, or a logical composition of Code Items: these are the Code Item Relation Operands. The logical
composition can be defined by means of Operators, whose goal is to compose some Code Items (events) in order to
obtain another Code Item (event) as a result. In this simple algebra, two operators are envisaged:

• the logical OR of mutually exclusive Code Items, denoted “+”, for example:

Benelux = Belgium + Luxembourg + Netherlands

This means that if a point of space belongs to Belgium OR Luxembourg OR Netherlands then it also belongs to
Benelux and that if a point of space belongs to Benelux then it also belongs either to Belgium OR to
Luxembourg OR to Netherlands (disjunction). In other words, the statement above says that territories of
Belgium, Netherland and Luxembourg are non-overlapping and their union is the territory of Benelux.
Consequently, as for the additive measures (and being equal the other possible Identifiers), the sum of the
measure values referred to Belgium, Luxembourg and Netherlands is equal to the measure value of Benelux.

• the logical complement of an implying Code Item in respect to another Code Item implied by it, denoted “-“, for
example:

EUwithoutUK = EuropeanUnion - UnitedKingdom

In simple words, this means that if a point of space belongs to the European Union and does not belong to the
United Kingdom, then it belongs to EUwithoutUK and that if a point of space belongs to EUwithoutUK then it
belongs to the European Union and not to the United Kingdom. In other words, the statement above says that
territory of the United Kingdom is contained in the territory of the European Union and its complement is the
territory of EUwithoutUK. Consequently, considering a positive and additive measure (and being equal the other
possible Identifiers), the difference of the measure values referred to EuropeanUnion and UnitedKingdom is
equal to the measure value of EUwithoutUK.

Please note that the symbols “+” and “-“ do not denote the usual operations of sum and subtraction, but logical
operations between Code Items seen as events of the probability theory. In other words, two or more Code Items
cannot be summed or subtracted to obtain another Code Item, because they are events (and not numbers), and
therefore they can be manipulated only through logical operations like “OR” and “Complement”.

Note also that the “+” also acts as a declaration that all the Code Items denoted by “+” are mutually exclusive (i.e. the
corresponding events cannot happen at the same time), as well as the “-“ acts as a declaration that all the Code
Items denoted by “-” are mutually exclusive. Furthermore, the “-“ acts also as a declaration that the relevant Code
item implies the result of the composition of all the Code Items denoted by the “+”.

At intuitive level, the symbol “+” means “with” (Benelux = Belgium with Luxembourg with Netherland) while the
symbol “-“ means “without” (EUwithoutUK = EuropeanUnion without UnitedKingdom).

When these relations are applied to additive numeric Measures (e.g. the population relevant to geographical areas),
they allow to obtain the Measure Values of the left member Code Items (i.e. the population of Benelux and
EUwithoutUK) by summing or subtracting the Measure Values relevant to the component Code Items (i.e. the
population of Belgium, Luxembourg and Netherland in the former case, EuropeanUnion and UnitedKingdom in the
latter). This is why these logical operations are denoted in VTL through the same symbols as the usual sum and
subtraction. Please note also that this is valid whichever the Data Set and the additive Measure are (provided that
the possible other Identifiers of the Data Set Structure have the same Values).

These relations occur between Code Items (events) belonging to the same Value Domain (space of events). They
are typically aimed at defining aggregation hierarchies, either structured in levels (classifications), or without levels
(chains of free aggregations) or a combination of these options. These hierarchies can be recursive, i.e. the

Documentation for VTL v2.1

22

aggregated Code Items can in their turn be the components of more aggregated ones, without limitations to the
number of recursions.

For example, the following relations are aimed at defining the continents and the whole world in terms of individual
countries:

• World = Africa + America + Asia + Europe + Oceania

• Africa = Algeria + … + Zimbabwe

• America = Argentina + … + Venezuela

• Asia = Afghanistan + … + Yemen

• Europe = Albania + … + Vatican City

• Oceania = Australia + … + Vanuatu

A simple model diagram for the Code Item Relations and Code Item Relation Operands is the following:

Documentation for VTL v2.1

23

An error has occured : java.lang.IllegalStateException
All systems are functioning Commander

PlantUML (1.2025.9) has crashed.

This version of PlantUML is 141 days old, so you should
consider upgrading from https://plantuml.com/download
Diagram size: 15 lines / 494 characters.

PlantUML (1.2025.9) cannot parse result from dot/GraphViz.

Please go to https://plantuml.com/graphviz-dot to check your GraphViz version.

Java Runtime: OpenJDK Runtime Environment
JVM: OpenJDK 64-Bit Server VM
Default Encoding: UTF-8
Language: en
Country: null

PLANTUML_LIMIT_SIZE: 4096

This may be caused by :
- a bug in PlantUML
- a problem in GraphViz

You should send this diagram and this image to plantuml@gmail.com or
post to https://plantuml.com/qa to solve this issue.
You can try to turn around this issue by simplifing your diagram.

java.lang.IllegalStateException
net.sourceforge.plantuml.svek.DotStringFactory.solve(DotStringFactory.java:341)
net.sourceforge.plantuml.svek.GraphvizImageBuilder.buildImage(GraphvizImageBuilder.java:285)
net.sourceforge.plantuml.svek.CucaDiagramFileMakerSvek.createFileInternal(CucaDiagramFileMakerSvek.java:104)
net.sourceforge.plantuml.svek.CucaDiagramFileMakerSvek.createFile(CucaDiagramFileMakerSvek.java:70)
net.atmp.CucaDiagram.exportDiagramInternal(CucaDiagram.java:489)
net.sourceforge.plantuml.classdiagram.ClassDiagram.exportDiagramInternal(ClassDiagram.java:85)
net.sourceforge.plantuml.UmlDiagram.exportDiagramNow(UmlDiagram.java:119)
net.sourceforge.plantuml.AbstractPSystem.exportDiagram(AbstractPSystem.java:220)
net.sourceforge.plantuml.SourceStringReader.outputImage(SourceStringReader.java:189)
net.sourceforge.plantuml.Pipe.generateDiagram(Pipe.java:108)
net.sourceforge.plantuml.Pipe.managePipe(Pipe.java:99)
net.sourceforge.plantuml.Run.main(Run.java:180)

Diagram source: (Use http://zxing.org/w/decode.jspx to decode the qrcode)

This diagram tells that a Code Item Relation has a first and a second member. The first member (the left one) refers
to just one Code Item, the second member (the right one) may refer to one or more Code Item Relation Operands;
each Code Item Relation Operand refers to just one Code Item.

Conditioned Code Item Relations

The Code Items (coded events) of a Code Item Relation can be conditioned by the Values (events) of other Value
Domains (spaces of events). Both the Code Items belonging to the first and the second member of the Relation can
be conditioned.

Documentation for VTL v2.1

24

A common case is the conditioning relevant to the reference time, which allows expressing the historical validity of a
Relation (see also the section about the historical changes below). For example, the European Union (EU) changed
its composition in terms of countries many times, therefore the Code Item Relationship between EU and its
component countries depends on the reference time, i.e. is conditioned by the Values of the “reference time” Value
Domain.

The VTL allows to express the conditionings by means of Boolean expressions which refer to the Values of the
conditioning Value Domains (for more details, see the Hierarchical Rulesets in the Reference Manual).

The historical changes

The changes in the real world may induce changes in the artefacts of the VTL-IM and in the relationships between
them, so that some definitions may be considered valid only with reference to certain time values. For example, the
birth of a new country as well as the split or the merge of existing countries in the real world would induce changes in
the Code Items belonging to the Geo Area Value Domain, in the composition of the relevant Sets, in the relationships
between the Code Items and so on. The same may obviously happen for other Value Domains.

A correct representation of the historical changes of the artefacts is essential for VTL, because the VTL operations
are meant to be consistent with these historical changes, in order to ensure a proper behaviour in relation to each
time. With regard to this aspect, VTL must face a complex environment, because it is intended to work also on top of
other standards, whose assumptions for representing historical changes may be heterogeneous. Moreover, different
institutions may use different conventions in different systems.

Naturally, adopting a common convention for representing the historical changes of the artefacts would be a good
practice, because the definitions made by different bodies would be given through the same methodology and
therefore would be easily comparable one another. In practice, however, different conventions are already in place
and have to be taken into account, because there can also be strong motivations to maintain them. For this reason,
the VTL does not impose any definite representation for the historical changes and leaves users free of maintaining
their own conventions, which are considered as part of the data content to be processed rather than of the language.

Actually, the VTL-IM intentionally does not include any mechanism for representing historical changes and needs to
be properly integrated to this purpose. This aspect is left to the standards and the institutions adopting VTL and the
implementers of VTL systems, which can adapt and enrich the VTL-IM as needed.

Even if presented here for association of ideas with the relations between Code Items whose temporal dependency
is intuitive, these considerations about the temporal validity of the definitions are valid in general.

Moreover, as already mentioned, the possibility of integrating the VTL-IM with additional metadata is needed also for
other purposes, and not only for dealing with the temporal validity.

It is appropriate here to highlight some relationships between the VTL artefacts and some possible temporal
conventions, because this can guide VTL implementers in extending the VTL-IM according to their needs.

First, we want to distinguish between two main temporal aspects: the so-called validity time and operational time.
Validity time is the time during which a definition is assumed to be true as an abstraction of the real world (for
example, Estonia belongs to EU “from 1st May 2004 to current date”). Operational time is the time period during
which a definition is available in the processing system and may produce operational effects. The following
considerations refers only to the former.

The assignment of identifiers to the abstractions of the real world is strictly related to the possible basic
temporal assumptions. Two main options can be considered:

a. The same identifier is assigned to the abstraction even if some aspects of such an abstraction change in time.
For example, the identifier EU is assigned to the European Union even if the participant countries change.
Under this option, a single identifier (e.g. EU) is used to represent the whole history of an abstraction, following
the intuitive conceptualization in which abstractions are identified independently of time and maintain the same
identity even if they change with time. The variable aspects of an abstraction are therefore described by
specifying their validity periods (for example, the participation of Estonia in the EU can be specified through the
relevant start and end dates).

b. Different Identifiers are assigned to the abstraction when some aspects of the abstraction change in time. For
example, more Identifiers (e.g. EU1, … EU9) represent the European Union, one for each period during which
its participant countries remain stable. This option is based on the conceptualization in which the abstractions
are identified in connection with the time period in which they do not change, so that an Code Item (e.g. EU1)
corresponds to an abstraction (e.g. the European Union) only for the time period in which the abstraction
remain stable (e.g. EU1 represents the European Union from when it was created by the founder countries, to

Documentation for VTL v2.1

25

the first time it changed composition). An example of adoption of this option b) is the common practice of giving
versions to Code Lists or Code Items for representing time changes (e.g. EUv

1
, … , EUv

9
 where v=version),

being each version assumed as invariable.

Therefore, the general assumptions of VTL for the representation of the historical changes are the following:

• The choice of adopting the options described above is left to the implementations.

• The VTL Identifiers are different depending on the two options above; for example in the option a) there would
exist one Identifier for the European Union (e.g. EU) while in the option b) there would exist many different
Identifiers, corresponding to the different versions of the European Union (e.g. EU1, … EU9).

• If the Code Items are versioned for managing temporal changes (option b), the version is considered part of the
VTL univocal identifier of the Code Item, and therefore different versions are equivalent to different Code Items.
As explained above, in fact, the European Union would be represented by many Code Items (e.g. EUv1, …
EUv9). The same applies if the Code Items are versioned by means of dates (e.g. start/end dates …) or other
conventions instead than version numbers. As obvious, the temporal validity of EUv1 … EUv9, if represented,
should not overlap.

The implementers of VTL systems can add the temporal validity (through validity dates or versions) to any class of
artefacts or relations of the VTL-IM (as well as any other additional characteristic useful for the implementation, like
the textual descriptions of the artefacts or others). If the temporal validity is not added, the occurrences of the class
are assumed valid “ever”.

The Variables and Value Domains artefacts

The list of the VTL artefacts related to Variables and Value Domains is given here, together with the information that
the VTL need to know about them. For the sake of simplicity, the names of some artefacts are often abbreviated in
the VTL manuals (in particular the parts of the names shown between parentheses can be omitted).

As already mentioned, this model provides an abstract view of the core metadata supporting the definition of the data
structures but leaves out implementation and operational aspects. For example, the textual descriptions of the
artefacts are left out, as well as the specification of the temporal validity of the artefacts, the procedural metadata
(the specification of the way data are processed i.e. collected, stored, validated, calculated/estimated, disseminated
…) and so on. In order to support real systems, the implementers can conveniently adjust this model and integrate it
by adding other metadata (e.g. other properties of the artefacts, other classes of artefacts, other relationships among
artefacts …).

(Represented) Variable

Variable name name of the Represented Variable

Value Domain name reference to the Value Domain that measures the
Variable, i.e. in which the Variable takes values

(Data Set) Component

Data Set name the Data set which the Component belongs to

Component name the name of the Component

(Sub) Set name reference to the (sub)Set containing the allowed values
for the Component

Value Domain

Value Domain name name of the Value Domain

Value Domain sub-class if it is an Enumerated or Described Value Domain

Basic Scalar Type the basic scalar type of the Values of the Value
Domain, for example string, number … and so on (see
also the section “VTL data types”)

Value Domain Criterion a criterion for restricting the Values of a basic scalar
type, for example by specifying a max length of the
representation, an upper or/and a lower value, and so
on

Documentation for VTL v2.1

26

Code List this artefact is comprised in the previous one, in fact it corresponds one to one to the enumerated Value
Domain (see above)

Value this artefact has no explicit representation, because the Values of described Value Domains are not
represented by definition, while the Values of the enumerated Value Domains are represented through the Code
Item artefact (see below)

Code Item this artefact defines the Code Items of the Enumerated Value Domains

Value Domain name the Value Domain, which the Value belongs to

Value the univocal name of the Value within the Value
Domain it belongs to

(Value Domain Sub) Set

Value Domain name the Value Domain, which the Value belongs to

Set name the name of the Set, which must be univocal within the
Value Domain

Set sub-class if it is an Enumerated or Described Set

Set Criterion a criterion for identifying the Values belonging to the
Set

Set List this artefact is comprised in the previous one, in fact it corresponds one to one to the enumerated Set

Set Item this artefact specifies the Code Items of the Enumerated Sets

Value Domain name reference to the Value Domain which the Set and the
Value belongs to

Set name the Set that contains the Value

Value Value element of the Set

Code Item Relation

1stMember Domain name Value Domain of the first member of the Relation; e.g.
Geo_Area

1stMemberValue the first member of the Relation; e.g. Benelux

1stMemberComposition conventional name of the composition method, which
distinguishes possible different compositions methods
related to the same first member Value. It must be
univocal within the 1stMember. Not necessarily, it has
to be meaningful; it can be simply a progressive
number, e.g. “1”

Relation Type type of relation between the first and the second
member, having as possible values =, <, <=, >, >=

Code Item Relation Operand

1stMember Domain name Value Domain of the first member of the Relation; e.g.
Geo_Area

1stMemberValue the first member of the Relation; e.g. Benelux

1stMemberComposition see the description already given above

2ndMember Value an operand of the Relation; e.g. Belgium

Operator the operator applied on the 2ndMember Value, it can
be “+” or ”- “; the default is “+”

Documentation for VTL v2.1

27

Generic Model for Transformations

The purpose of this section is to provide a formal model for describing the validation and transformation of the data.

A Transformation is assumed to be an algorithm to produce a new model artefact (typically a Data Set) starting from
existing ones. It is also assumed that the data validation is a particular case of transformation; therefore, the term
“transformation” is meant to be more general and to include the validation case as well.

This model is essentially derived from the SDMX IM 14, as DDI and GSIM do not have an explicit transformation
model at the present time 15. In its turn, the SDMX model for Transformations is similar in scope and content to the
Expression metamodel that is part of the Common Warehouse Metamodel (CWM) 16 developed by the Object
Management Group (OMG).

The model represents the user logical view of the definition of algorithms by means of expressions. In comparison to
the SDMX and CWM models, some technical details are omitted for the sake of simplicity, including the way
expressions can be decomposed in a tree of nodes in order to be executed (if needed, this detail can be found in the
SDMX and CWM specifications).

The basic brick of this model is the notion of Transformation.

A Transformation specifies the algorithm to obtain a certain artefact of the VTL information model, which is the result
of the Transformation, starting from other existing artefacts, which are its operands.

Normally the artefact produced through a Transformation is a Data Set (as usual considered at a logical level as a
mathematical function). Therefore, a Transformation is mainly an algorithm for obtaining derived Data Sets starting
from already existing ones.

The general form of a Transformation is the following:

result assignment_operator expression

meaning that the outcome of the evaluation of expression in the right-hand side is assigned to the result of the
Transformation in the left-hand side (typically a Data Set). The assignment operators are two, ”:=” and “<-“ (for the
assignment to a persistent or a non-persistent result, respectively). A very simple example of Transformation is:

Dr <- D1 (Dr , D1 are assumed to be Data Sets)

In this Transformation the Data Set D1 is assigned without changes (i.e. is copied) to Dr, which is persistently stored.

In turn, the expression in the right-hand side composes some operands (e.g., some input Data Sets, but also Sets or
other artefacts) by means of some operators (e.g. sum, product …) to produce the desired results (e.g. the validation
outcome, the calculated data).

For example: Dr := D1 + D2 (Dr , D1 , D2 are assumed to be Data Sets)

In this example, the measure values of the Data Set Dr are calculated as the sum of the measure values of the Data
Sets D1 and D2, by composing the Data Points having the same Values for the Identifiers. In this case, Dr is not
persistently stored.

A validation is intended to be a kind of Transformation. For example, the simple validation that D1 = D2 can be made
through an “If” operator, with an expression of the type:

Dr := If (D1 = D2 , then TRUE, else FALSE)

In this case, the Data Set Dr would have a Boolean measure containing the value TRUE if the validation is
successful and FALSE if it is unsuccessful.

These are only fictitious examples for explanation purposes. The general rules for the composition of Data Sets (e.g.
rules for matching their Data Points, for composing their measures …) are described in the sections below, while the
actual Operators of the VTL and their behaviours are described in the VTL reference manual.

The expression in the right-hand side of a Transformation must be written according to a formal language, which
specifies the list of allowed operators (e.g. sum, product …), their syntax and semantics, and the rules for composing
the expression (e.g. the default order of execution of the operators, the use of parenthesis to enforce a certain order
…). The Operators of the language have Parameters 17, which are the a-priori unknown inputs and output of the
operation, characterized by a given role (e.g. dividend, divisor or quotient in a division).

Note that this generic model does not specify the formal language to be used. In fact, not only the VTL but also other
languages might be compliant with this specification, provided that they manipulate and produce artefacts of the
information model described above. This is a generic and formal model for defining Transformations of data through

Documentation for VTL v2.1

28

mathematical expressions, which in this case is applied to the VTL, agreed as the standard language to define and
exchange validation and transformation rules among different organizations

Also, note that this generic model does not actually specify the operators to be used in the language. Therefore, the
VTL may evolve and may be enriched and extended without impact on this generic model.

In the practical use of the language, Transformations can be composed one with another to obtain the desired
outcomes. In particular, the result of a Transformation can be an operand of other Transformations, in order to define
a sequence of calculations as complex as needed.

Moreover, the Transformations can be grouped into Transformations Schemes, which are sets of Transformations
meaningful to the users. For example, a Transformation Scheme can be the set of Transformations needed to obtain
some specific meaningful results, like the validations of one or more Data Sets. A Transformation Scheme is meant
to be the smaller set of Transformations to be executed in the same run.

A set of Transformations takes the structure of a graph, whose nodes are the model artefacts (usually Data Sets)
and whose arcs are the links between the operands and the results of the single Transformations. This graph is
directed because the links are directed from the operands to the results and is acyclic because it should not contain
cycles (like in the spreadsheets), otherwise the result of the Transformations might become unpredictable.

The ability of generating this graph is a main feature of the VTL, because the graph documents the operations
performed on the data, just like a spreadsheet documents the operations among its cells.

Documentation for VTL v2.1

29

Transformations model diagram
An error has occured : java.lang.IllegalStateException
I believe it's a rough situation over there

PlantUML (1.2025.9) has crashed.

This version of PlantUML is 141 days old, so you should
consider upgrading from https://plantuml.com/download
Diagram size: 29 lines / 1097 characters.

PlantUML (1.2025.9) cannot parse result from dot/GraphViz.

Please go to https://plantuml.com/graphviz-dot to check your GraphViz version.

Java Runtime: OpenJDK Runtime Environment
JVM: OpenJDK 64-Bit Server VM
Default Encoding: UTF-8
Language: en
Country: null

PLANTUML_LIMIT_SIZE: 4096

This may be caused by :
- a bug in PlantUML
- a problem in GraphViz

You should send this diagram and this image to plantuml@gmail.com or
post to https://plantuml.com/qa to solve this issue.
You can try to turn around this issue by simplifing your diagram.

java.lang.IllegalStateException
net.sourceforge.plantuml.svek.DotStringFactory.solve(DotStringFactory.java:341)
net.sourceforge.plantuml.svek.GraphvizImageBuilder.buildImage(GraphvizImageBuilder.java:285)
net.sourceforge.plantuml.svek.CucaDiagramFileMakerSvek.createFileInternal(CucaDiagramFileMakerSvek.java:104)
net.sourceforge.plantuml.svek.CucaDiagramFileMakerSvek.createFile(CucaDiagramFileMakerSvek.java:70)
net.atmp.CucaDiagram.exportDiagramInternal(CucaDiagram.java:489)
net.sourceforge.plantuml.classdiagram.ClassDiagram.exportDiagramInternal(ClassDiagram.java:85)
net.sourceforge.plantuml.UmlDiagram.exportDiagramNow(UmlDiagram.java:119)
net.sourceforge.plantuml.AbstractPSystem.exportDiagram(AbstractPSystem.java:220)
net.sourceforge.plantuml.SourceStringReader.outputImage(SourceStringReader.java:189)
net.sourceforge.plantuml.Pipe.generateDiagram(Pipe.java:108)
net.sourceforge.plantuml.Pipe.managePipe(Pipe.java:99)
net.sourceforge.plantuml.Run.main(Run.java:180)

Diagram source: (Use http://zxing.org/w/decode.jspx to decode the qrcode)

White box: same as in GSIM 1.1

Dark grey box: additional detail (in respect to GSIM 1.1)

Documentation for VTL v2.1

30

Explanation of the diagram

Transformation: the basic element of the calculations, which consists of a statement that assigns the outcome of
the evaluation of an Expression to an Artefact of the Information Model;

Expression: a finite combination of symbols that is well formed according to the syntactical rules of the language.
The goal of an Expression is to compose some Operands in a certain order by means of the Operators of the
language, in order to obtain the desired result. Therefore, the symbols of the Expression designate Operators,
Operands and the order of application of the Operators (e.g. the parenthesis); an expression is defined as a text
string and is a property of a Transformation;

Transformation Scheme: a set of Transformations aimed at obtaining some meaningful results for the user (like the
validation of one or more Data Sets); the Transformation Scheme is meant to be the smaller set of Transformation to
be executed in the same run and therefore may also be considered as a VTL program;

Operator: the specification of a type of operation to be performed on some Operands (e.g. sum (+), subtraction (-),
multiplication (*), division (/));

Parameter: a-priori unknown input or output of an Operator, having a definite role in the operation (e.g. dividend,
divisor or quotient for the division) and corresponding to a certain type of artefact (e.g. a “Data Set”, a “Data Structure
Component” …), for a deeper explanation see also the Data Type section below. When an Operator is invoked, the
actual input passed in correspondence to a certain input Parameter, or the actual output returned by the Operator, is
called Argument.

Operand: a specific Artefact referenced in the expression as an input (e.g. a specific input Data Set); a Persistent
Operand references a persistent artefact, i.e. an artefact maintained in a persistent storage, while a Non Persistent
Operand references a temporary artefact, which is produced by another Transformation and not stored.

Result: a specific Artefact to which the result of the expression is assigned (e.g. the calculated Data Set); a
Persistent Result is put away in a persistent storage while a Non Persistent Result is not stored.

Identifiable Artefact: a persistent Identifiable Artefact of the VTL information model (e.g. a persistent Data Set); a
persistent artefact can be operand of any number of Transformation but can be the result of no more than one
Transformation.

Examples

Imagine that D1, D2 and D3 are Data Sets containing information on some goods, specifically: D1 the stocks of the
previous date, D2 the flows in the last period, D3 the current stocks. Assume that it is desired to check the
consistency of the Data Sets using the following statement:

Dr := If ((D1 + D2) = D3 , then “true”, else “false”)

In this case:

The Transformation may be called “basic consistency check between stocks and flows” and is formally defined
through the statement above.

• Dr is the Result

• D1, D2 and D3 are the Operands

• If ((D1 + D2) = D3 , then TRUE, else FALSE) is the Expression

• “:=”, “If”, “+” , “=” are Operators

Each operator has some predefined parameters, for example in this case:

• input parameters of “+”: two numeric Data Sets (to be summed)

• output parameters of “+”: a numeric Data Sets (resulting from the sum)

• input parameters of “=”: two Data Sets (to be compared)

• output parameter of “=”: a Boolean Data Set (resulting from the comparison)

• input parameters of “If”: an Expression defining a condition, i.e. (D1+D2)=D3

• output parameter of “If”: a Data Set (as resulting from the “then”, “else” clauses)

Documentation for VTL v2.1

31

Functional paradigm

As mentioned, the VTL follows a functional programming paradigm, which treats computations as the evaluation of
mathematical functions, so avoiding changing-state and mutable data in the specification of the calculation algorithm.
On one side the statistical data are considered as mathematical functions (first order functions), on the other side the
VTL operators are considered as functions as well (second order functions), applicable to some data in order to
obtain other data.

According to the functional paradigm, the output value of a (second order) function depends only on the input
arguments of the function, is calculated in its entirety and once for all by applying the function, and cannot be altered
or modified once calculated (immutable) unless the input arguments change.

In fact, the VTL operators, and the expressions built using these operators, specify the algorithm for calculating the
results in their entirety, once for all, and never for updating them. When some change in the operands occurs (e.g.
the input data change), the VTL assumes that the results are recalculated in their entirety according to the
correspondent expressions 18.

Coherently, a VTL artefact can be result of just one Transformation and cannot be updated by other Transformations,
a Transformation cannot update either its own operands or the result of other Transformations and the result of a
new Transformation is always a new artefact.

Transformation Consistency

The Transformation model requires that the Transformations follow some consistency rules, similar to the ones
typical of the spreadsheets; in fact, there is a strict analogy between the generic models of Transformations and
spreadsheets.

In this analogy, a VTL artefact corresponds to a non-empty cell of a spreadsheet, a Transformation to the formula
defined in a cell (which references other cells as operands), a Result to the content of the cell in which the formula is
defined 19.

The model artefacts involved in Transformations can be divided into “collected / primary” or “calculated / derived”
ones. The former are original artefacts of the information system, not result of any Transformation, fed from some
external source or by the users (they are analogous to the spreadsheet cells that are not calculated). The latter are
produced as results of some Transformations (they are analogous to the spreadsheet cells calculated through a
formula).

As already said, a Transformation calculates just one result (“derived” model artefact) and a result is calculated by
just one Transformation. Both “primary” and “derived” model artefacts can be operands of any number of
Transformations. An artefact cannot be operand and result of the same Transformation.

A Transformation belongs to just one Transformation Scheme, which is analogous to a whole spreadsheet; in fact, it
is a set of Transformations executed in the same run and may contain any number of Transformations, in order to
produce any number of results.

Because a “derived” model artefact is produced by just one Transformation and a Transformation belongs to just one
Transformation Scheme, it follows also that a “derived” model artefact is produced in the context of just one
Transformation Scheme.

The operands of a Transformation may come either from the same Transformation Scheme which the
Transformation belongs to or from other ones.

Within a Transformation Scheme, it can be built a graph of the Transformations by assuming that each model
artefact is a node and each Transformation is a set of arcs, starting from the Operand nodes and ending in the Result
node.

This graph must be a directed acyclic graph (DAG): in particular, each arc is oriented from the operand to the result;
the absence of cycles makes it possible to calculate unambiguously the “derived” nodes by applying the
Transformations by following the topological order of the graph.

Therefore, like in the spreadsheet, not necessarily, the Transformations are performed in the same order as they are
written, because the order of execution depends on their input-output relationships (a Transformation that calculates
a result, which is operand of other Transformations must be executed first).

In the analogy between VTL and a spreadsheet, the correspondences would be the following:

• VTL model artefact ■■ non-empty cell of a spreadsheet;

Documentation for VTL v2.1

32

• VTL “collected / primary” model artefact ■■ non-empty cell of a spreadsheet whose value is fed from an
external source or by the user;

• A “calculated / derived” model artefact ■■ a non-empty cell of a spreadsheet whose value is calculated by a
formula;

• A VTL Transformation ■■ A spreadsheet formula assigned to a cell

• a VTL Transformation Scheme ■■ A whole spreadsheet

5 The definition of a temporary artefact can be also persistent, if needed.

6 See also the section “Relations with the GSIM Information model”

7 Hyperlink “https://unece.org/statistics/modernstats/gsim”

8 Some initiatives have been started by UNECE High-Level Group for the Modernisation of
Official Statistics (HLG-MOS); see for example https://unece.org/statistics/documents/2023/11/
working-documents/hlg2023-ssg-sdmxvtlddi-implement-gsim.

9 For example in the Common Warehouse Metamodel and Meta-Object Facility specifications

10 For example, this is the case of a relationship that does not have properties: imagine a Data Set
containing the relationship between the students and the courses that they have followed,
without any other information: the corresponding Data Set would have StudentId and CourseId
as Identifiers and would not have any explicit measure

11 For example, for ensuring correct operations, the knowledge of the Data Structure of the input
Data Sets is essential at parsing time, in order to check the correctness of the VTL expression
and determine the Data Structure of the result, and at execution time to perform the calculations

12 This is the Value Domain which measures the Represented Variable, which defines the Data
Structure Component, which the Data Set Component matches to

13 According to the probability theory, a random experiment is a procedure that returns a result
belonging a predefined set of possible results (for example, the determination of the “geographic
location” may be considered as a random experiment that returns a point of the Earth surface as
a result). The “space of results” is the space of all the possible results. Instead an “event” is a
set of results (going back to the example of the geographic location, the event “Europe” is the
set of points of the European territory and more in general an “event” corresponds to a
“geographical area”). The “space of events” is the space of all the possible “events” (in the
example, the space of the geographical areas).

14 The SDMX specification can be found at https://sdmx.org/?page_id=5008 (see Section 2 -
Information Model, package 13 - “Transformations and Expressions”).

15 The Transformation model described here is not a model of the processes, like the ones that
both SDMX and GSIM have, and has a different scope. The mapping between the VTL
Transformation and the Process models is not covered by the present document.

16 This specification can be found at http://www.omg.org/cwm.

17 The term is used with the same meaning of “argument”, as usual in computer science.

18 At the implementation level, which is out of the scope of this document, the update operations
are obviously possible

19 The main difference between the two cases is the fact that a cell of a spreadsheet may contain
only a scalar value while a VTL artefact may have also a more complex data structure, being
typically a Data Set

VTL Data types
The possible operations in VTL depend on the data types of the artefacts. For example, numbers can be multiplied
but text strings cannot.

When an Operator is invoked, for each (formal) input Parameter, an actual argument (operand) is passed to the
Operator, and for the output Parameter, an actual argument (result) is returned by the Operator. The data type of the
argument must comply with the allowed data types of the corresponding Parameter (the allowed data types of each
Parameter for each Operator are specified in the Reference Manual).

Documentation for VTL v2.1

33

https://unece.org/statistics/modernstats/gsim
https://unece.org/statistics/documents/2023/11/working-documents/hlg2023-ssg-sdmxvtlddi-implement-gsim
https://unece.org/statistics/documents/2023/11/working-documents/hlg2023-ssg-sdmxvtlddi-implement-gsim
https://sdmx.org/?page_id=5008
http://www.omg.org/cwm

Every possible argument for a VTL Operator (with special attention to artefacts of the Information Model, e.g.,
Values, Sets, Data Sets) must be typed and such type deterministically inferable.

In other words, VTL Operators are strongly typed and type compliance is statically checked, i.e., violations result in
compile-time errors.

Data types can be related one another, and in particular, a data type can have sub-types and super-types. For
example integer number is a sub-type of the type number, and number is in turn a super-type of integer number: this
means that any integer number is also a number but not the reverse, because there is no guarantee that a generic
number is also an integer number. More in general, an object of a certain type is also of the respective super-types,
but there is no guarantee that an object of a super-type is of any of its sub-types.

As a consequence, if a Parameter is required to be of certain type, the arguments have either this very type or any of
its sub-types; arguments of its super-types are not allowed (e.g. if a Parameter is a number, an argument of type
integer is accepted; vice versa, if it is an integer, an argument of type number will not be accepted).

The data types depend on two main factors: the kind of values adopted for the representation (e.g. text strings,
numbers, dates, Boolean values) and the kind of structure of the data (e.g. elementary scalar values or compound
values organized in more complex structures like Sets, Components, Data Sets …).

The data types for scalar values also called “scalar types” (e.g. the scalar 15 is of the scalar type “number”, while
“hello” is of the scalar type “string”). The scalar types are elementary because they are not defined in term of other
data types. All the other data types are compound.

For the sake of simplicity, hereinafter the term “data type” is sometimes abbreviated to “type” and the term “scalar
type” to “scalar”.

A particular meta-syntax is used to specify the type of the Parameters. For example, the symbol :: means “is of the
type …” or simply “is a …” (e.g. “15 :: number” means “15 is of the type number”).

In the following sections, the classes of the VTL types are illustrated, as well as some relationships between the
types and the artefacts of the Information Model.

Documentation for VTL v2.1

34

Data Types overview

Data Types model diagram

Documentation for VTL v2.1

35

An error has occured : java.lang.IllegalStateException
Sir, are you classified as human?

PlantUML (1.2025.9) has crashed.

This version of PlantUML is 141 days old, so you should
consider upgrading from https://plantuml.com/download
Diagram size: 40 lines / 1378 characters.

PlantUML (1.2025.9) cannot parse result from dot/GraphViz.

Please go to https://plantuml.com/graphviz-dot to check your GraphViz version.

Java Runtime: OpenJDK Runtime Environment
JVM: OpenJDK 64-Bit Server VM
Default Encoding: UTF-8
Language: en
Country: null

PLANTUML_LIMIT_SIZE: 4096

This may be caused by :
- a bug in PlantUML
- a problem in GraphViz

You should send this diagram and this image to plantuml@gmail.com or
post to https://plantuml.com/qa to solve this issue.
You can try to turn around this issue by simplifing your diagram.

java.lang.IllegalStateException
net.sourceforge.plantuml.svek.DotStringFactory.solve(DotStringFactory.java:341)
net.sourceforge.plantuml.svek.GraphvizImageBuilder.buildImage(GraphvizImageBuilder.java:285)
net.sourceforge.plantuml.svek.CucaDiagramFileMakerSvek.createFileInternal(CucaDiagramFileMakerSvek.java:104)
net.sourceforge.plantuml.svek.CucaDiagramFileMakerSvek.createFile(CucaDiagramFileMakerSvek.java:70)
net.atmp.CucaDiagram.exportDiagramInternal(CucaDiagram.java:489)
net.sourceforge.plantuml.classdiagram.ClassDiagram.exportDiagramInternal(ClassDiagram.java:85)
net.sourceforge.plantuml.UmlDiagram.exportDiagramNow(UmlDiagram.java:119)
net.sourceforge.plantuml.AbstractPSystem.exportDiagram(AbstractPSystem.java:220)
net.sourceforge.plantuml.SourceStringReader.outputImage(SourceStringReader.java:189)
net.sourceforge.plantuml.Pipe.generateDiagram(Pipe.java:108)
net.sourceforge.plantuml.Pipe.managePipe(Pipe.java:99)
net.sourceforge.plantuml.Run.main(Run.java:180)

Diagram source: (Use http://zxing.org/w/decode.jspx to decode the qrcode)

Documentation for VTL v2.1

36

Explanation of the diagram

Data Type: this is the class of all the data types manipulated by the VTL. As already said, the actual data type of an
object depends on its kind of representation and structure. As for the structure, a Data Type may be a Scalar Data
Type or a Compound Data Type.

Scalar Type: the class of all the scalar types, i.e., the possible types of scalar Values. The scalar types are
elementary because they are not defined in terms of other types. The Scalar Types can be Basic Scalar Types,
Value Domain Scalar Types and Set Scalar Types.

Compound Data Type: the class of the compound types, i.e. the types that are defined in terms of other types.

Basic Scalar Type: the class of the scalar types which exist by default in VTL (namely, string,number, integer, time,
date, time_period, duration, boolean).

Value Domain Scalar Type: the class of the scalar types corresponding to all the scalar Values belonging to a Value
Domain.

Set Scalar Type: the class of the scalar types corresponding to all the scalar Values belonging to a Set (i.e., Value
Domain Subset).

Component Type: the class of the types that the Components of the Data Sets belong to, i.e. Represented
Variables that assume a certain Role in the Data Set Structure.

Data Set Type: the class of the Data Sets’ types, which are the more common input types of the VTL operators.

Operator Type: the class of the Operators’ types, i.e., the functions that convert the types of the input operands in
the type of the result.

Ruleset Type: the class of the Rulesets’ types, i.e. the set of Rules defined by users that specify the behaviour of
other operators (like the check and the hierarchy operators).

Product Type: the class of the types that contain Cartesian products of artefacts belonging to other generic types.

Universal Set Type: the class of the types that contain unordered collections of other artefacts that belong to
another generic type and do not have repetitions.

Universal List Type: the class of the types that contain ordered collections of other artefacts that belong to another
generic type and can have repetitions.

General conventions for describing the types

• The name of the type is written in lower cases and without spaces (for example the Data Set type is named
“dataset”).

• The double colon :: means “is of the type …” or simply “is a …”; for example the declaration

operand :: string

means that the operand is a string.

• The vertical bar | indicates mutually exclusive type options, for example

operand :: scalar | component | dataset

means that “operand” can be either scalar, or component, or dataset.

• The angular parenthesis < type2 > indicates that type 2 (included in the parenthesis) restricts the specification
of the preceding type, for example:

operand :: component <string>

means “the operand is a component of string basic scalar type”.

If the angular parenthesis are omitted, it means that the preceding type is already completely specified, for
example:

operand :: component

means “the operand is a component without other specifications” and therefore it can be of any scalar type, just
the same as writing operand :: component<scalar> (in fact as already said, “scalar” means “any scalar type”).

• The underscore _ indicates that the preceding type appears just one time, for example:

Documentation for VTL v2.1

37

measure<string> _

indicates just one Measure having the scalar type string; the underscore also mean that this is a
non-predetermined generic element, which therefore can be any (in the example above, the string Measure can
be any).

• A specific element_name in place of the underscore denotes a predetermined element of the preceding type,
for example:

measure<string not null> my_text

means just one Measure Component, which is a not-null string type and whose name is “my_text”.

• The symbol _+ means that the preceding type may appear from 1 to many times, for example:

measure<string> _+

means one or more generic Measures having the scalar type string (these Measures are not predetermined).

• The symbol _* means that the preceding type may appear from 0 to many times, for example:

measure<string> _*

means zero or more generic Measures having the scalar type string (these Measures are not predetermined).

Scalar Types

Basic Scalar Types

The Basic Scalar Types are the scalar types on which VTL is founded.

The VTL has various basic scalar types (namely, string, number, integer, time, date, time_period, duration, boolean).
The super-type of all the scalar types is the type scalar, which means “any scalar value”. The type number has the
sub-type integer and the type time has two independent sub-types, namely date and time_period.

The hierarchical tree of the basic scalar types is the following:

Scalar

String

Number Integer

Time

Date

Time period

Duration

Boolean

A Scalar Value of type string is a sequence of alphanumeric characters of any length. On Scalar Values of type
string, the string operations can be allowed, like concatenation of strings, split of strings, extraction of a part of a
string (substring) and so on.

A Scalar Value of type number is a rational number of any magnitude and precision, also used as approximation of a
real number. On values of type number, the numeric operations are allowed, such as addition, subtraction,
multiplication, division, power, square root and so on. The type integer (positive and negative integer numbers and
zero) is a subtype of the type number.

Documentation for VTL v2.1

38

A Scalar Value of type time denotes time intervals of any duration and expressed with any precision. According to
ISO 8601 (ISO standard for the representation of dates and times), a time interval is the intervening time between
two time points. This type can allow operations like shift of the time interval, change of the starting/ending times, split
of the interval, concatenation of contiguous intervals and so on (not necessarily all these operations are allowed in
this VTL version).

The type date is a subtype of the type time which denotes time points expressed at any precision, which are
time intervals starting and ending in the same time point (i.e. intervals of zero duration). A value of type date
includes all the parts needed to identify a time point at the desired precision, like the year, the month, the day,
the hour, the minute and so on (for example, 2018-04-05 is the fifth of April 2018, at the precision of the day).

The type time_period is a subtype of the type time as well and denotes non- overlapping time intervals having a
regular duration (for example the years, the quarters of years, the months, the weeks and so on). A value of the
type time_period is composite and must include all the parts needed to identify a regular time period at the
desired precision; in particular, the time-period type includes the explicit indication of the kind of regular period
considered (e.g., “day”, “week”, “month”, “quarter” …). For example, the value 2018M04, assuming that “M”
stands for “month”, denotes the month n.4 of the 2018 (April 2018). Moreover, 2018Q2, assuming that “Q”
stands for “quarter”, denotes the second quarter of 2018. In these examples, the letters M and Q are used to
denote the kind of period through its duration.

A Scalar Value of type duration denotes the length of a time interval expressed with any precision and without
connection to any particular time point (for example one year, half month, one hour and fifteen minutes). According to
ISO 8601, in fact, a duration is the amount of intervening time in a time interval. The duration is the scalar type of
possible Value Domains and Components representing the period (frequency) of periodical data.

A Scalar Value of type boolean denotes a logical binary state, meaning either “true” or “false”. Boolean Values allow
logical operations, such as: logical conjunction (and), disjunction (or), negation (not) and so on.

All the scalar types are assumed by default to contain the conventional value “NULL”, which means “no value”, or
“absence of known value” or “missing value” (in other words, the scalar types by default are “nullable”). Note that the
“NULL” value, therefore, is the only value of multiple different types (i.e., all the nullable scalar types).

The scalar types have corresponding non-nullable sub-types, which can be declared by adding the suffix “not null” to
the name of the type. For example, string not null is a string that cannot be NULL, as well as number not null is a
number that cannot be NULL.

The VTL assumes that a basic scalar type has a unique internal representation and more possible external
representations.

The internal representation is the reference representation of a scalar type in a VTL system, used to process the
scalar values. The use of a unique internal representation allows to operate on values possibly having different
external formats: the values are converted in the reference representation and then processed. Although the unique
internal representation can be very important for the operation of a VTL system, not necessarily users need to know
it, because it can be hidden in the VTL implementation. The VTL does not prescribe any predefined internal
representation for the various scalar types, leaving different VTL systems free to using they preferred or already
existing ones. Therefore, the internal representations to be used for the VTL scalar types are left to the VTL
implementations.

The external representations are the ones provided by the Value Domains which refer to a certain scalar type (see
also the following sections). These are also the representations used for the Values of the Components defined on
such Value Domains. As obvious, the users have to know the external representations and formats, because these
are used in the Data Point Values. Obviously, the VTL does not prescribe any predefined external representation,
leaving different VTL systems free to using they preferred or already existing ones.

Examples of possible different choices for external representations:

• for the strings, various character sets can be used;

• for the numbers, it is possible to use the dot or the comma as decimal separator, a fixed or a floating point
representation; non-decimal or non-positional numeral systems and so on;

• for the time, date, time_period, duration it can be used one of the formats suggested by the ISO 8601 standard
or other possible personalized formats;

• the “boolean” type can use the values TRUE and FALSE, or 0 and 1, or YES and NO or other possible binary
options.

Documentation for VTL v2.1

39

It is assumed that a VTL system knows how to convert an external representation in the internal one and vice-versa,
provided that the format of the external representation is known.

For example, the external representation of dates can be associated to the internal one provided that the parts that
specify year, month and day are recognizable 20.

Value Domain Scalar Types

This is the class of the scalar Types corresponding to the scalar Values belonging to the same Value Domains (see
also the section “Generic Model for Variables and Value Domains”).

The super-type of all the Value Domain Scalar Types is valuedomain, which means any Value Domain Scalar Type.
A specific Value Domain Scalar Type is identified by the name of the Value Domain.

As said in the IM section, a Value Domain is the domain of allowed Values for one or more represented variables. In
other words, a Value Domain is the space in which the abstractions of a certain category of the reality (population,
age, country, economic sector …) are represented.

A Value Domain refers to one of the Basic Scalar Types, which is the basic type of all the Values belonging to the
Value Domain. A Value Domain provides an external representation of the corresponding Basic Scalar Type and can
also restrict the possible (abstract) values of the latter. Therefore, a Value Domain defines a customized scalar type.

For example, assuming that the “population” is represented by means of numbers from zero to 100 billion, the
(possible) “population” Value Domain refers to the “integer” basic scalar type, provides a representation for it (e.g.,
the number is expressed in the positional decimal number system without the decimal point) and allows only the
integer numbers from zero up to 100 billion (and not all the possible numbers). Numeric operations are allowed on
the population Values.

As another example, assuming that the “classes of population” are represented by means of the characters from A to
C (e.g. A for population between 0 and 1 million, B for population greater that 1million until 1 billion, C for population
greater than 1 billion), the “classes of population” Value Domain refers to the “string” basic scalar type and allows
only the strings “A”, “B” or “C”. String operations are possible on these values.

As usual, even if many operations are possible from the syntactical point of view, not necessarily they make sense
on the semantical plane: as usual, the evaluation of the meaningfulness of the operations remains up to the users. In
fact, the same abstractions, in particular if enumerated and coded, can be represented by using different possible
Value Domains, also using different scalar types. For example, the country can be represented through the ISO
3166-1 numeric codes (type number), or ISO alpha-2 codes (type string), or ISO alpha-3 codes (type string), or other
coding systems. Even if numeric operations are possible on ISO 3166-1 country numeric codes, as well as string
operations are possible on ISO 3166-1 alpha-2 or alpha-3 country codes, not necessarily these operations make
sense.

While the Basic Scalar Types are the types on which VTL is founded and cannot be changed, all the Value Domains
are user defined, therefore their names and their contents can be assigned by the users.

Some VTL Operators assume that a VTL system have certain kinds of Value Domains which are needed to perform
the correspondent operations 21. In the VTL manuals, definite names and representations are assigned to such
Value Domains for explanatory purposes; however, these names and representations are not mandatory and can be
personalised if needed. If VTL rules are exchanged between different VTL systems, the partners of the exchange
must be aware of the names and representations adopted by the counterparties.

Set Scalar Types

This is the class of the scalar types corresponding to the scalar Values belonging to the same Sets (see also the
section “Generic Model for Variables and Value Domains”).

The super-type of all the Set Scalar Types is set, which means any Set Scalar Type. A specific Set Scalar Type is
identified by the name of the Set.

A Set is a (proper or improper) subset of the Values belonging to a Value Domain (the Set of all the values of the
Value Domain is an improper subset of it). A scalar Set inherits from its Value Domain the Basic Scalar Type and the
representation and can restrict the possible Values of its Value Domain (as a matter of fact, except the Set which
contains all the values of its Value Domain and can also be assumed to exist by default, the other Sets are defined
just to restrict the Values of the Value Domain).

Documentation for VTL v2.1

40

External representations and literals used in the VTL Manuals

The Values of the scalar types, when written directly in the VTL definitions or expressions, are called literals.

The literals are written according to the external representations adopted by the specific VTL systems for the VTL
basic data types (i.e., the representations of their Value Domains). As already said, the VTL does not prescribe any
particular external representation.

In these VTL manuals, anyway, there is the need to write literals of the various data types in order to explain the
behaviour of the VTL operators and give proper examples. The representation of these literals are not intended to be
mandatory and are not part of the VTL standard specifications, these are only the representations used in the VTL
manuals for explanatory purposes and many other representations are possible and legal.

The representations adopted in these manuals are described below.

The string values are written according the Unicode and ISO/IEC 10646 standards.

The number values use the positional numeral system in base 10.

• A fixed-point number begins with the integer part, which is a sequence of numeric characters from 0 to 9 (at
least one digit) optionally prefixed by plus or minus for the sign (no symbol means plus), a dot is always present
in the end of the integer part and separates the (possible) fractional part, which is another sequence of numeric
characters.

• A floating point number, has a mantissa written like a fixed-point number, followed by the capital letter E (for
“Exponent”) and by the exponent, written like a fixed-point integer;

For example:

• Fixed point numbers: 123.4567 +123.45 -8.901 0.123 -0.123

• Floating point numbers: 1.23E2 +123.E-2 -0.89E1 0.123E0

The integer values are represented like the number values with the following differences:

• A fixed-point integer is written like a fixed-point number but without the dot and the fractional part.

• A floating point integer is written like a floating-point number but cannot have a negative mantissa.

For example:

• Fixed point integers: 123 +123 -123

• Floating point integers: 123E0 1E3

The time values are conventionally represented through the initial and final Gregorian dates of the time interval
separated by a slash. The accuracy is reduced at the level of the day (therefore omitting the time units shorter than
the day like hours, minutes, seconds, decimals of second). The following format is used (this is one of the possible
options of the ISO 8601 standard):

YYYY-MM-DD/YYYY-MM-DD

where YYYY indicates 4 digits for the year, MM indicates two digits for the month, DD indicates two digits for the day.
For example:

2000-01-01/2000-12-31 the whole year 2000

2000-01-01/2009-12-31 the first decade of the XXI century

The date values are conventionally represented through one Gregorian date. The accuracy is reduced at the
level of the day (therefore omitting the time units shorter than the day like hours, minutes, seconds, decimals of
second). The following format is used (this is one of the possible options of the ISO 8601 standard):

YYYY-MM-DD

The meaning of the symbols is the same as above. For example:

2000-12-31 the 31st December of the year 2000

2010-01-01 the first of January of the year 2010

The time_period values are represented for sake of simplicity with accuracy equal to the day or less (week,
month …) and a periodicity not higher than the year. In the VTL manuals, the following format is used (this is a
personalized format not compliant with the ISO 8601 standard):

Documentation for VTL v2.1

41

YYYYPppp

where YYYY are 4 digits for the year, P is one character for specifying which is the duration of the regular period
(e.g. D for day, W for week, M for month, Q for quarter, S for semester, Y for the whole year, see the codes of
the duration data type below), ppp denotes from zero two three digits which contain the progressive number of
the period in the year. For example:

2000M12 the month of December of the year 2000

2010Q1 the first quarter of the year 2010

2020Y the whole year 2010

The duration values in these manuals are conventionally restricted to very few predefined durations that are codified
through just one character as follows:

Code Duration

D Day

W Week

M Month

Q Quarter

S Semester

A Year (Annual)

This is a very simple format not compliant with the ISO 8601 standard, which allows representing durations in a
much more complete, even if more complex, way. As mentioned, the real VTL systems may adopt any other external
representation.

The boolean values used in the VTL manuals are TRUE and FALSE (without quotes).

When a literal is written in a VTL expression, its basic scalar type is not explicitly declared and therefore is unknown.

For ensuring the correctness of the VTL operations, it is important to assess the scalar type of the literals when the
expression is parsed. For this purpose, there is the need for a mechanism for the disambiguation of the literals types,
because often the same literal might itself belong to many types, for example:

• the word “true” may be interpreted as a string or a boolean,

• the symbol “0“ may be interpreted as a string, a number or a boolean,

• the word “20171231” may be interpreted as a string, a number or a date.

The VTL does not prescribe any predefined mechanism for the disambiguation of the scalar types of the literals,
leaving different VTL systems free to using they preferred or already existing ones. The disambiguation mechanism,
in fact, may depend also on the conventions adopted for the external representation of the scalar types in the VTL
systems, which can be various.

In these VTL manuals, anyway, there is the need to use a disambiguation mechanism in order to explain the
behaviour of the VTL operators and give proper examples. This mechanism, therefore, is not intended to be
mandatory and, strictly speaking, is not part of the VTL standard.

If VTL rules are exchanged between different VTL systems, the partners of the exchange must be aware of the
external representations and the disambiguation mechanisms adopted by the counterparties.

The disambiguation mechanism adopted in these VTL manuals is the following:

• The string literals are written between double quotes, for example the literal “123456” is a string, even if its
characters are all numeric, as well as “I am a string! “.

• The numeric literals are assumed to have some pre-definite patterns, which are the numeric patterns used for
the external representation of the numbers described above.

A literal having one of these patterns is assumed to be a number.

• The boolean literals are assumed to be the values TRUE and FALSE (capital letters without quotes).

In these manuals, it is also assumed that the types time, date, time_period and duration do not directly support
literals. Literal values of such types can be anyway built from literals of other types (for example they can be written

Documentation for VTL v2.1

42

as strings) and converted in the desired type by the cast operator (type conversion). In some cases, the conversion
can be made automatically, (i.e., without the explicit invocation of the cast operator – see the Reference Manual for
more details).

As mentioned, the VTL implementations may personalize the representation of the literals and the disambiguation
mechanism of the basic scalar types as desired, provided that the latter work properly and no ambiguities in
understanding the type of the literals arise. For example, in some cases the type of a literal can also be deduced
from the context in which it appears. As already pointed out, the possible personalised mechanism should be
communicated to the counterparties if the VTL rules are exchanged.

Conventions for describing the scalar types

• The keywords which identify the basic scalar types are the following: scalar, string, number, integer, time, date,
time_period, duration, boolean.

• By default, the basic scalar types are considered as nullable, i.e., allowing NULL values.

• The keyword not null following the type (and the “literal” keyword if present), means that the scalar type does
not allow the NULL value, for example:

operand :: string literal not null

means that the operand is a literal of string scalar type and cannot be NULL; if not null is omitted the NULL
value is meant to be allowed.

• An expression within square brackets following the previous keywords, means that the preceding scalar type
is restricted by the expression. This is a VTL boolean expression 22 (whose result can be TRUE or FALSE)
which specifies a membership criterion, that is a condition that discriminates the values which belong to the
restriction (sub-type) from the others (the value is assumed to belong to the sub-type only if the expression
evaluates to TRUE). The keyword “value” stands for the generic value of the preceding scalar type and is used
in the expression to formulate the restrictive condition. For example:

integer [value <= 6]

is a sub-type of integer which contains only the integers lesser than or equal to 6.

The following examples show some particular cases:

• The generic expression [between (value, x, y)] 23 restricts a scalar type by indicating a closed interval of
possible values going from the value x to the value y, for example

integer [between (value, 1, 100)]

is the sub-type which contains the integers between 1 and 100.

• The generic expression [(value > x) and (value < y)] restricts a scalar type by indicating an open interval of
possible values going from the value x to the value y, for example

integer [(value > 1) and (value < 100)]

means integer greater than 1 and lesser than 100 (i.e., between 2 and 99).

• By using >= or <= in the expressions above, the intervals can be declared as open on one side and closed on
the other side, for example

integer [(value >= 1) and (value < 100)]

means integer greater than or equal to one and lesser than 100.

• The generic expressions [value >= x] or [value > x] or [value <= y] or [value < y] restrict a scalar type by
indicating an interval having one side unbounded, for example

integer [value >= 1]

means integer equal to or greater than 1, while “integer[value < 100]” means an integer lesser than 100.

• The generic expression [value in { v1, … , vN }] 24 restricts a scalar type by specifying explicitly a set of
possible values, for example

integer { 1, 2, 3, 4, 5, 6 }

Documentation for VTL v2.1

43

means an integer which can assume only the integer values from 1 to 6. The same result is obtained by
specifying [value in set_name], where in is the “Element of” VTL operator and set_name is the name of an
existing Set (Value Domain Subset) of the VTL IM.

• By using in the expression the operator length 25 it is possible to restrict a scalar type by specifying the possible
number of digits that the values can have, for example

integer [between (length (value), 1, 10)]

means an integer having a length from one to 10 digits.

As obvious, other kinds of conditions are possible by using other VTL operators and more conditions can be
combined in the restricting expression by using the VTL boolean operators (and, or, not …)

• Like in the general case, a restricted scalar type is considered by default as including the NULL value. If the
NULL value must be excluded, the type specification must be followed by the symbol not null; for example

integer [between (length (value), 1, 10)] not null

means a not-null integer having from one to 10 digits.

Compound Data Types

The Compound data types are the types defined in terms of more elementary types.

The compound data types are relevant to artefacts like Components, Data Sets and to other compound structures.
For example, the type Component is defined in terms of the scalar type of its values, besides some characteristics of
the Component itself (for example the role it assumes in the Data Set, namely Identifier, Measure or Attribute).
Similarly, the type of a Data Set (i.e. of a mathematical function) is defined in terms of the types of its Components.

The compound Data Types are described in the following sections.

Component Types

This is the class of the Component types, i.e. of the Components of the Data Structures (for example the country of
residence used as an Identifier, the resident population used as a Measure …).

A Component is essentially a Variable (i.e. an unknown scalar Value with a certain meaning, e.g. the resident
population) which takes Values in a Value Domain or a Set and plays a definite role in a data structure (i.e. Identifier,
Measure or Attribute). A Component inherits the scalar type (e.g. number) from the relevant Value Domain.

The main sub-types of the Component Type depend on the role of the Component in the data structure and are the
identifier, measure and attribute types (if the automatic propagation of the Attributes is supported, another sub-type
is the viral attribute). These types reflect the fact that the VTL behaves differently on Components of different roles.
Their common super- type is component, which means “a Component having any role”.

Moreover, a Component type can be restricted by an associated scalar type (e.g. number, string …), therefore the
complete specification of a Component type takes the form

role_type < scalar_type >

where the scalar type included in angular parenthesis, restricts the specification of the preceding type (the role type);
omitted angular parenthesis mean “any scalar type”, which is the same as writing <scalar>. Examples of Component
types are the following:

component (or component<scalar>) any Component

• component<number> any Component of scalar type number

• identifier (or identifier<scalar>) any Identifier

• identifier<time not null> Identifier of scalar type time not null

• measure (or measure<scalar>) any Measure

• measure<boolean> Measure of scalar type Boolean

• attribute (or attribute<scalar>) any Attribute

• attribute<string> Attribute of scalar type string
In the list above, the more indented types are sub-types of the less indented ones.

Documentation for VTL v2.1

44

According to the functional paradigm, the Identifiers cannot contain NULL values, therefore the scalar type of the
Identifiers Components must be “not null”.

In summary, the following conventions are used for describing Component types.

• As already said, the more general type is “component” which indicates any component, for example:

operand :: component

means that “operand” may be any component.

• The main sub-types of the component type correspond to the roles that the Component may assume in the
Data Set, i.e., identifier, measure, attribute; for example:

operand :: measure

means that the operand must be a Measure.

The additional role viral attribute exists if the automatic propagation of the Attributes is supported 26. The type
viral_attribute is a sub-type of attribute.

• By default, a Component can be either specified directly through its name or indirectly through a sub-expression
that calculates it.

• The optional keyword name following the type keyword means that a component name must be specified and
that the component cannot be obtained through a sub-expression; For example:

operand :: measure name <string>

means that the name of a string Measure must be specified and not a string sub-expression 27. If the name
keyword is omitted the sub-expression is allowed.

• The symbol < scalar type > means that the preceding type is restricted to the scalar type specified within the
angular brackets”, for example:

operand :: component < string >

means that the operand is a Component having any role and belonging to the string scalar type; if the restriction
is not specified, then the scalar type can be any (for example operand:: attribute means that the operand is an
Attribute of any scalar type).

• In turn, the scalar type of a Component can be restricted; for example:

operand:: measure < integer [value between 1 and 100] not null >

means that the operand can be a not-null integer Measure whose values are comprised between 1 and 100.

Data Set Types

This is the class of the Data Sets types. The Data Sets are the main kind of artefacts manipulated by the VTL and
their types depend on the types of their Components.

The super-type of all the Data Set types is dataset, which means “any dataset” (according to the definition of Data
Set given in the IM, as obvious).

A sub-type of dataset is the Data Sets of time series, which fulfils the following restrictive conditions:

• The Data Set structure must contain one Identifier Component that acts as the reference time, which must
belong to one of the basic scalar types time, date or time_period.

• The possible values of the reference time Identifier Component must be regularly spaced

• For the type time, the time intervals must start (or end) at a regular periodicity and have the same duration

• For the type date, the time values must have a regular periodicity

• For the type time_period there are no additional conditions to fulfil, because the time_period values
comprise by construction the indication of the period and therefore are regularly spaced by default

• It is assumed that it exist the information about which is Identifier Components that acts as the reference time
and about which is the period (frequency) of the time series and that such information is represented in some
way in the VTL system. The VTL does not prescribe any predefined representation, leaving different VTL
systems free to using they preferred or already existing ones. It is assumed that the VTL operators acting on

Documentation for VTL v2.1

45

time series know which is the reference time Identifier and the period of the time series and use these
information to perform correct operations.

Usually, the information about which is the reference time is included in the data structure definition of the Data
Sets or in the definition of the Data Set Components.

Some commonly used representations of the periodicity are the following:

• For the types time and date, the period is often represented through an additional Component of the Data
Set (of any possible role) or an additional metadata relevant to the whole Data Set or some parts of it. This
Component (or other metadata) is of the “duration” type and is often called “frequency”.

• For the type time_period, the periodicity is embedded in the time_period values.

In any case, if some periodical data exist in the system, it is assumed that a Value Domain representing the
possible periods exists and refers to the duration scalar type.

Within a Data Set of Time Series, a single Time Series is the set of Data Points that have the same values for all the
Identifier Components except the reference time 28. A Data Set of time series can also contain more time series
relevant to the same phenomenon but having different periodicities, provided that one or more Identifiers (other than
the reference time) distinguish the Time Series having different periodicity.

The Data Sets of time series are the possible operands of the time series operators (they are described in the
Reference Manual).

More specific Data Set Types can be defined by constraining the dataset type, for example by specifying the number
and the type of the possible Components in the different roles (Identifiers, Measures and Attributes), and even their
names if needed. Therefore the general syntax is:

dataset { type_constraint } or dataset_ts { type_constraint }

where the type_constraint may assume many different forms which are described in detail in the following section.
Examples of Data Set types are the following:

dataset Any Data Set (according to the IM)

dataset { measure <number> _* } A Data Set having one or more Measures of type
number, without constraints on Identifiers and
Attributes

dataset { measure <boolean> _ , attribute<string> _* } A Data Set having one boolean Measure, one or more
string Attributes and no constraints on Identifiers

In summary, the following conventions are used for describing Data Set types.

• The more general type is “dataset” which means any possible Data Set of the VTL IM (in other words, a Data
Set having any possible components allowed by the IM integrity rules)

• By default, a Data Set can be either specified directly through its name or indirectly through a sub-expression
which calculates it.

• The optional keyword name following dataset means that a Data Set name must be specified and that the Data
Set cannot be obtained through a sub-expression; for example:

operand:: dataset name

means that a Data Set name must be specified and not a sub-expression. If the name keyword is omitted the
sub-expression is allowed.

• The symbol dataset { type_constraint } indicates that the type_constraint included in curly parenthesis
restricts the specification of the preceding dataset type without giving a complete type specification, but
indicating only the constraints in respect to the general structure of the artefact of the Information Model
corresponding to such type. For example, given that the generic structure of a Data Set in the IM may have any
number of Identifiers, Measures and Attributes and that these Components may be of any scalar type, the
declaration:

operand :: dataset { measure<string> _ }

means that the operand is of type Data Set having any number of Identifiers (like in the IM), just one Measure of
string type (as declared in the type declaration) and any number of Attributes (like in the IM).

Documentation for VTL v2.1

46

• Some or all the Data Set Components can also be predetermined. For example writing:

operand:: dataset { identifier<st_Id1> Id1, …, identifier<st_IdN> IdN, measure<st_Me1> Me1, … ,
measure<st_MeL> MeL, attribute<st_At1> At1, … , attribute<st_AtK> AtK }

means that the operand is of Data Set type and has the identifier, measure and attribute types and names
specified within the curly brackets (in the example, <st_Id1> stands for the scalar type of the Component named
Id1 and so on). This is the example of an extremely specific Data Set type in which all the component types and
names are fixed in advance.

• If a certain role (i.e. identifier, measure, attribute) is not specified, it means that there are no restrictions on it, for
example:

operand:: dataset { me<st_Me1 > Me1, … , me<st_MeL > MeL }

means that the operand is of Data Set type and has the measure types and names specified within the curly
brackets, while the Identifier and Attribute components have no restrictions and therefore can be any.

Product Types

This is the class of the Cartesian products of other types; a product type is written in the form t
1
 * t

2
 * … * t

n
 where ti

(1 < i <= n) is another arbitrary type; the elements of a Product type are n-tuples whose i
th

 element belongs to the
type t

i
. For instance, the product type:

string * integer * boolean

includes elements like 30 (“PfgTj”, 7, true), (“kj-o”, 80, false), (“”, 4, false) but does not include for example (“qwe”,
2017-12-31, true), (“kj-o”, 80, 92).

The superclass is product, which means any product type.

Product types can be used in practice for several reasons. They allow:

i. the natural expression of exclusion or inclusion criteria (i.e., constraints) over values of two or more dataset
components;

ii
.

the definition of the domain of the Operators in term of types of their Parameters

ii
i.

the definition of more complex data types.

Operator Types

This is the class of the Operators’ types, i.e., the higher-levels functions that allow transformations from the type t1
(the type of the input Parameters), to the type t2 (the type of the output Parameter). An Operator Type is written in
the form ‘t1 -> t2’, where t1 and t2 are arbitrary types. For example, the type of the following operator says that it
takes as input two integer Parameters and returns a number:

Op1 :: integer * integer -> number

The superclass is operator, which means any operator type.

Ruleset Types

The class of the Ruleset types, i.e. the set of Rules that are used by some operators like “check_hierarchy”,
“check_datapoint”, “hierarchy”, “transcode”. The general syntax for specifying a Ruleset type is main_type_of_ruleset
{type_constraint}.

The main Rulesets types are the datapoint and the hierarchical Rulesets. Their super-type is ruleset that means “any
Ruleset”. Moreover, Rulesets can be defined either on Value domains or on Variables, therefore the
main_type_of_rulesets are:

ruleset

• datapoint

• datapoint_on_value domains

• datapoint_on_variables

Documentation for VTL v2.1

47

• hierarchical

• hierarchical_on_value_domains

• hierarchical_on_variables
In the list above, the more indented types are sub-types of the less indented ones.

The type_constraint is optional and may assume many different forms that depends on the main_type_of_ruleset. If
the type_constraint is present, the main_type_of_ruleset must specify if the ruleset is defined on Value Domains or
Variables (i.e., it must be one of the more indented types above).

A datapoint Ruleset is defined on a Cartesian product of Value Domains or Variables, therefore the type_constraint
can contain such a list. Examples of constrained datapoint types are:

datapoint on value domains {(geo_area * sector * time_period * numeric_value)}

datapoint on variables {(ref_date * import_currency * import_country)}

datapoint on value domains {date * _+}

The last one is the type of the Data Point Rulesets that are defined on the “date” Value Domain and on one to many
other Value Domains (“_+” means “one or more”).

A hierarchical Ruleset is defined on one Value Domain or Variable and can contain conditions referred to other Value
Domains or Variables; therefore, the type_constraint for hierarchical Rulesets can take one of the following forms:

{value_domain * (conditioningValueDomain1 * … * conditioningValueDomainN)}

{variable * (conditioningVariable1 * … * conditioningVariableN)}.

Examples of hierarchical types are:

hierarchical on value domains {geo_area * (time_period)} hierarchical on variables { currency * (date * country
) } hierarchical on value domains { _ }

hierarchical on value domains { _ * (reference_date)}

The last one is the type of the Data Point Rulesets that are defined on the “date” Value Domain and on one to many
other Value Domains (in the meta-syntax “_+” means “one or more”).

The last one is the type of the Hierarchical Rulesets that are defined on any Value Domain and are not conditioned
by other Value Domains.

Universal Set Types

The Universal Sets are unordered collections of other objects that belong to the same type t and do not have
repetitions (each object can belong to a Set just once). The Universal Sets are denoted as set<t>, where t is another
arbitrary type. If < t > is not specified it means any universal set type.

Possible examples are the Sets of product types. For instance the Universal Set Type:

set < string * integer * boolean >

includes the sets 29:

{ (“PfgTj”, 7, true), (“kj-o”, 80, false), (“”, 4, false) }

{ (“duo9”, 67, true), (“io/p”, 540, true) }

But does not includes the sets:

{ (“PfgTj”, 7, true), 80, (“”, 4, false) } in fact 80 is not a product type

{ (“duo9”, 67, true), (50, true) } in fact (50, true) is not the right product type

{ (“”, 4, false), (“F”, 8, true), (“”, 4, false) } in fact (“”, 4, false) is repeated

Universal List Types

The Universal Lists are ordered collections of other objects that belong to the same type t and can have repetitions
(an object can appear in a list more than once). The Universal Lists are denoted as list<t>, where t is an arbitrary
type. . If < t > is not specified it means any universal list type.

Documentation for VTL v2.1

48

For instance the following Universal List type:

list < component>

includes elements like 31 [reference date, import, export] but does not include elements like [dataset1, country,
sector] and [import, “text”] because dataset1 and “text” are not Components.

20 This can be achieved in many ways that depend on the data type and on the adopted internal
and external representations. For example, there can exist a default correspondence (e.g., 0
means always False and 1 means always True for Boolean), or the parts of the external
representation can be specified through a mask (e.g., for the dates, DD-MM-YYYY or
YYYYMMDD specify the position of the digits representing year, month and day).

21 For example, at least one default Value Domain should exists for each basic scalar type, the
Value Domains needed to represent the results of the checks should exist, and so on.

22 I.e., an expressions whose result is boolean

23 “between (x, y, z)” is the VTL operator which returns TRUE if x is comprised between y and z

24 “in” is the VTL operator which returns TRUE if an element (in this case the value) belongs to a
Set; the symbol { … , … , … } denotes a set defined as the list of its elements (separated by
commas)

25 “length” is the VTL Operator that returns the length of a string (in the example, the integer
operand of the length operator is automatically cast to a string and its length is determined)

26 See the section “Behaviour for Attribute Components”

27 I.e., a sub-expressions whose result is string

28 Therefore each combination of values of the Identifier Components except the reference time
identifies a Time Series

29 In the VTL syntax the symbol () allows to define a tuple in-line by enumeration of its elements

30 In the VTL syntax, the symbol {…} denotes a set defined as the list of its elements (separated by
commas).

31 In the VTL syntax, the symbol [] allows to define a List in-line by enumeration of its elements.

VTL Transformations
This section describes the key concepts, assumptions and characteristics of the VTL which are needed to a VTL
user to define Transformations. As mentioned in the section about the general characteristics above, the language is
oriented to users without deep information technology (IT) skills, who should be able to define calculations and
validations independently, without the intervention of IT personnel. Therefore, the VTL has been designed to make
the definition of the Transformations as intuitive as possible and to reduce the chances of errors.

As already said, a Transformation consists of a statement that assigns the outcome of the evaluation of an
Expression to an Artefact of the Information Model. Then, Transformations are made of the following components:

• A right side, which contains the expression to be evaluated, whose inputs are the operands of the
Transformation

• An assignment operator

• A left side, which specifies the Artefact which the outcome of the expression is assigned to (this is the result of
the Transformation)

Examples of assignments are (assuming that Di (i=1…n) are Data Sets):

• D1 := D2

• D3 := D4 + D5

Assuming that E is the expression, R is the result and IOi (i=1,… n) the input Operands, the mathematical form of a
Transformation based on E can be written as follows:

R := E (IO1, IO2, … , IOn)

Documentation for VTL v2.1

49

The expression uses any number of VTL operators in combination to specify a compound operation. Because all the
VTL operators are functional, the whole expression is functional too.

Transformations are properly chained for their execution; in fact, the result Ri of a Transformation Ti can be
referenced as operand of another Transformation Tj. In this case, the former Transformation is evaluated first in
order to provide the input for the latter. To enforce the consistency of the results, the cycles are not allowed,
therefore in the case above the result Rj of the Transformation Tj cannot be operand of the Transformation Ti and
cannot contribute to the calculation of any operand of Ti, even indirectly through a chain of other Transformations.

The order in which the user defines the Transformations may be important for a better understanding but cannot
override the order of execution determined according their input-output relationships.

For the rules for the Transformation consistency, see also the section “Generic Model for Transformation” above.

A VTL program is a set of Transformations executed in the same run, which is defined as a Transformation Scheme.

The Expression

A VTL expression constitutes the right side of a Transformation. It takes one or more input operands and returns one
output artefact.

An expression is the invocation of one or more operators in combination, in which the result of an operator is passed
as input parameter to another operator, and so on, in a tree structure. The root of the tree structure is last operator to
be applied and gives the final result.

For example, for the expression a + b - c the result of the addition a+b is passed to the following subtraction, which
gives the final result.

An expression is built from the following ingredients:

• Operators, which specify the operation to be performed (e.g. +, - and so on). As mentioned, the standard VTL
operators are described in detail in the Reference Manual, moreover the VTL allows defining and then invoking
“user defined operators” (see the Reference Manual, the VTL-DL for the definition and the VTL-ML for the
invocation). Each operator envisages a certain number of input parameters of definite data types and produces
an outcome having a definite data type (the types parameter are described in detail in the Reference Manual for
each operator).

• Operands, which are the actual arguments passed to the invoked Operators, for example writing D1 + D2 the
Operator “+” is invoked and the Operands D1 and D2 are passed to it. The Operands can be:

• Named artefacts, which are VTL artefacts specified through their names. Their actual values are obtained
either referring to an external persistent source (persistent artefacts) or as result of previous
Transformations (non-persistent artefacts) of the same Transformation Scheme; they are identified by
means of a symbolic name (e.g. in D1 + D2 the Operands D1 and D2 are identified by the names D1 and
D2). Examples of identified artefacts are the Data Sets (like D1 and D2 above) and the Data Set
Components (like D1#C1, D1#C2, D1#C3, where # means that Cj is a Component of the Data Set Di).

• Literals, which are VTL artefacts whose actual values are directly written in the expression; for example,
in the invocation D1 + 7 the second operand (7) is a literal, in this case a scalar literal. Also other kind of
artefacts can be written in the expressions, for example the curly brackets denote the value of a Set (for
example {1, 2, 3, 4, 5, 6} is the set of the integers from 1 to 6) and the square brackets denote a list (for
example [7, 5, 3, 6, 3] is a list of numbers).

• Parenthesis, which specify the order of evaluation of the operators; for example in the expression D1 * (D2 +
D3) first the sum D2 + D3 is evaluated and then their product for D1. In case the parenthesis are not used, the
default order of evaluation (described in the Reference Manual) is applied (in the example, first the product and
then the sum).

An expression implies different steps of calculation, for example the expression:

R := O1 + O2 / (O3 – O4 / O5)

can be calculated in the following steps:

I. (O4 / O5)

II
.

(O3 - I)

Documentation for VTL v2.1

50

II
I.

(O2 / II)

IV
.

(O1 + III)

The intermediate and final results (I, II, III, IV) of the expression are assumed to be non-persistent (temporary). The
persistency of the result Data Set R is controlled by the assignment operator, as described below.

An intermediate result within the expression can be only the input of other operators in the same expression.

In general, unless differently specified in the Reference Manual, in the invocation of an operator any operand can be
the result of a sub-expression that calculates it. For example, taking the exponentiation whose syntax is

power(base, exponent),

the invocation power(D1 + D2 , 2) is allowed and means that first D1 + D2 is calculated and then the result is
squared. As usual, the data type of the calculated operand must comply with the allowed data types of the
corresponding Parameter (in the example above, D1 + D2 must have a numeric data type, otherwise it cannot be
squared).

The nesting capabilities allow writing from very simple to very complex expressions. The complexity of the
expressions can be managed by the users by splitting or merging transformations. For example, taking again the
example above, the following two options would give the same result:

Option 1:

Dr := power(D1 + D2 , 2)

Option 2:

D3 := D1 + D2

Dr := power(D3 , 2)

In both cases, in fact, first D1 + D2 is evaluated and then the power operator is applied to obtain Dr.

In general, it is possible either to have simpler expressions by splitting and chaining Transformations or to have a
minor number of Transformations by writing more complex expressions.

The Assignment

The assignment of an expression to an artefact is done through an assignment operator. The VTL has two
assignment operators, the persistent and the non-persistent assignment:

<- persistent assignment

:= non-persistent assignment

The former assigns the outcome of the expression on the left side to a persistent artefact, the latter to a
non-persistent one; therefore, the choice of the assignment operator allows controlling the persistency of the artefact
that is result of the Transformation.

The only artefact that can be made persistent is the result (the left side artefact). In fact, as already mentioned, the
intermediate and final results of the right side expression are always considered as non-persistent.

For example, taking again the example of Transformation above:

Dr := power(D1 + D2 , 2)

The result Dr can be declared as persistent by writing:

Dr <- power(D1 + D2 , 2)

Instead, to make persistent also the intermediate result of D1 + D2 it is necessary to split the Transformation like in
the option 2 above:

D3 <- D1 + D2

Dr <- power(D3 , 2)

Documentation for VTL v2.1

51

The persistent assignment operator is also called Put, because it is used to specify that a result must be put in a
persistent store. The Put has two parameters, the first is the final result of the expression on the right side that has to
be made persistent, the second is the reference to the persistent Data Set which will contain such a result.

The Result

The left side artefact, i.e. the result of the Transformation, is always a named Data Set (i.e. a Data Set identified by
means of a symbolic name like explained in the previous section).

The data type and structure of the left side Data Set coincide with the data type and structure of the outcome of the
expression, which must be a Data Set as well.

Almost all VTL operators act on Data Sets. Many VTL operators can act also on Data Set Components to produce
other Data Set Components, however even in this case the outcome of the expression is a new Data Set that
contains the calculated Components.

An expression can result also in scalar Value; because many VTL operators can act on scalar Values to obtain other
scalar Values, furthermore some particular operations on Data Sets can eliminate Identifiers, Measures and
Attributes and obtain scalar Values (see the Reference Manual). The result of such expressions is considered as a
named Data Set that does not have Components (Identifiers, Measures and Attributes) and therefore contains just
one scalar Value. The Data Sets without Components can be manipulated and possibly stored like any other Data
Set. Because the VTL notion of Data Set is logical and not physical, more Data Set without Components can be
stored in the same physical Data Set if appropriate.

The current VTL version does not include operators that produce other output data types, for example, there are not
operators that manipulate Sets (however this is a possible future development).

In fact, the Data Set at the moment is the only type of Artefact that can be produced and stored permanently through
a command of the language.

The names

The artefact names

The names are the labels that identify the “named” artefacts that are operands or result of the transformations.

For ensuring the correctness of the VTL operations, it is important to distinguish the names from the scalar literals
when the expression is parsed. For this purpose, the disambiguation mechanism that distinguishes the types of the
scalar literals must also be able of distinguishing names and scalar literals.

As already mentioned in the section about the scalar literals, the VTL does not prescribe any predefined
disambiguation mechanism, leaving different VTL systems free to using they preferred or already existing ones. In
these VTL manuals, anyway, there is the need to use some disambiguation mechanisms in order to explain the
behaviour of the VTL operators and give proper examples. These mechanisms are not intended to be mandatory and
therefore, strictly speaking, they are not part of the VTL standard specifications. If no drawbacks exist, however, their
adoption is encouraged to foster the convergence between possible different practices. If VTL rules are exchanged,
the disambiguation mechanisms should be communicated to the counterparties, at least if they are different from the
one suggested hereinafter.

The general rules for the names are given below. As said above, these rules can be personalized (for example
restricted) in some implementations (e.g. a particular implementation can require that a name starts with a letter).

The names are strings of characters no more than 128 characters long and are classified in regular and non-regular
names.

The regular names:

• can contain alphabetic and numeric characters and the special characters underscore (_) and dot (.) ,

• must begin with an alphanumeric character and not with a special character

• must contain at least one alphabetic character

• cannot be a VTL reserved word

Examples or regular names are abcdef, 1ab_cde, a.b.c_d_e, 1234_5.

The regular names are:

Documentation for VTL v2.1

52

• written in the Transformations / Expressions without delimiters

• case insensitive

The non-regular names:

• can contain alphanumeric characters and, in addition to the underscore and the dot, any other Unicode
character

• can contain blanks

• can begin with special characters

• can contain only numeric characters

• can be equal to the VTL reserved words

The non-regular names are:

• written in the Transformations / Expressions with single quotes as delimiters

• case sensitive

Examples of non-regular names, which therefore are enclosed in single quotes, are ’_abcdef’, ‘1ab-cde’, ‘12345’,
‘power’ (the first begins with a special character, the second contains the “-“ character that is not allowed, the third
contains only numeric characters, the fourth coincides to a VTL reserved word (the name of the exponentiation
operator). These names would not be recognized by VTL if not enclosed between single quotes.

The VTL reserved words (and symbols) are:

• the keywords of the VTL-ML and VTL-DL operators and of their parameters (e.g. <, := , # , inner_join, as, using,
filter, apply, rename, to, + , - , power, and, or, not, group by, group except, group all, having …)

• the names of the classes of VTL artefacts of the VTL-IM (e.g., value, value domain, value domain subset, set,
variable, component, data set, data structure, operator, operand parameter, transformation …)

• additional keywords for possible future use like get, put, join, map, mapping, merge, transcode and the names
of commonly used mathematical and statistical functions.

The environment name

In order to ensure non-ambiguous definitions and operations, the names of the artefacts must be unique, meaning
that an identifier cannot be assigned to more than one artefact.

In practice, the unicity of the names is ensured in a certain environment, that can be also called namespace (i.e. the
space in which the names are assigned without ambiguities). For examples, more Institutions (agencies) which
operate independently can assign the same name to different artefacts, therefore they are cannot be considered as
part of the same environment.

The artefacts input to a Transformation can come also from other environments than the one in which the
Transformation is defined. In these cases, the artefact identifier must be accompanied by a Namespace, which
specifies the Data Set environment, to univocally identify the artefact to retrieve (for example the Data Set).

Therefore, the reference to an artefact belonging to a different environment assume the following form:

Namespace\Name

Namespace is the identifier of the environment and Name is the identifier of the artefact within the environment. The
separator is the backslash (\).

When the Namespace is not specified, the artefact is assumed to belong to the same environment as the
Transformation.

The result of a Transformation is always assumed to belong to the same environment as the Transformation,
therefore the specification of the namespace of the result is not allowed.

Within a given environment, the names of all the VTL artefacts (such as Value Domains, Sets, Variables,
Components, Data Sets) are assigned by the users.

Some VTL Operators assume that a VTL environment have certain default names for some kinds of Variables or
Value Domains which are needed to perform the correspondent operations (for example, the operators which
transform the data type of the Measure of the input Data Sets assign a default name to the resulting Measure, the
check operators assign default names to Components and Value Domains needed to represent the results of the

Documentation for VTL v2.1

53

checks). In the VTL manuals, some definite default names are adopted for explanatory purposes, however these
names are not mandatory and can be personalised if needed. If VTL rules are exchanged between different VTL
systems, the partners of the exchange must be aware of the names adopted by the counterparties.

The connection to the persistent storage

As described in the VTL IM, the Data Set is considered as an artefact at a logical level, equivalent to a mathematical
function. A VTL Data Set contains the set of Data Points that are the occurrences of the function. Each Data Point is
interpreted an association between a combination of values of the independent variables (the Identifiers) and the
corresponding values of the dependent variables (the Measures and Attributes).

Therefore, the VTL statements reference the conceptual/logical Data Sets and not the objects in which they are
persistently stored. As already mentioned, there can be any relationships between the VTL logical Data Sets and the
corresponding persistent objects (one VTL Data Set in one storage object, more VTL Data Sets in one storage
object, one VTL Data Set in more storage objects, more VTL Data Sets in more storage objects). The mapping
between the VTL Data Sets and the storage objects is out of the scope of the VTL and is left to the implementations.

VTL Operators
As mentioned, the VTL is made of Operators, which are the basic operations that the language can do. For example,
the VTL has mathematical operators (e.g. sum (+), subtraction (-), multiplication (*), division (/)…), string operators
(e.g. string concatenation, substring…), comparison operators (e.g. equal (=), greater than (>), lesser than (<)…),
logical operators (e.g. and, or, not…) and so on.

An Operator has some input and output Parameters, which are its a-priori unknown operands and result, have a
definite role in the operation (e.g. dividend, divisor or quotient for the division) and correspond to a certain type of
artefact (e.g. a “Data Set”, a “Data Set Component”, a “scalar Value”…).

The VTL operators are considered as functions (high-order functions 32), which manipulate one or more input
first-order functions (the operands) to produce one output first-order function (the result).

Assuming that F is the function corresponding to an operator, that P
0
 is its output parameter and that P

i (i=1,… n)
 are

its input parameters, the mathematical form of an operator can be written as follows:

P
0
 = F (P

1
, … , P

n
)

The function F composes the Parameters P
i
 to obtain P

0
 (as mentioned, P

i (i=1,…,n)
 and P

0
 must be first order

functions). In the common case in which the Parameters are Data Sets, F composes the Data Points of the input
Data Sets D

i (i=1,…,n)
 to obtain the Data Points of the output Data Set D

0
.

When an Operator is invoked, for each input Parameter an actual argument (operand) is passed to the Operator,
which returns an argument (result) for the output Parameter.

Each parameter has a type, which is the data type of the possible arguments that can be passed or returned for it.
For example, the parameters of a multiplication are of type number, because only the numbers can be multiplied (in
fact for example the strings cannot). For a deeper explanation of the data types see the corresponding section.

The categories of VTL operators

The VTL operators are classified according to the following categories.

1. The VTL standard library contains the standard VTL operators: they are described in detail in the Reference
Manual.

On the technical perspective, the standard VTL operations can be divided into the following two sub-categories:

a. The core set of operations; these are the primitive ones, so that all the other operations can be defined in
terms of them. The core operations are:

i. The operations that accept scalar arguments as operands and return a scalar value (for example the sum
between numeric scalar values, the concatenation between string scalar values, the logical operation
between boolean scalar values …).

ii
.

The various kinds of Join operators, which allow to apply the scalar operations at the Data Set level, i.e. to
compose Data Sets with scalar values or with other Data Sets.

Documentation for VTL v2.1

54

ii
i.

Other special operators which cannot be defined by means of the previous two categories (for example the
analytical functions).

b. The non-core standard operations; they are standard VTL operations as well but are not “primitive” and can
be derived from the core operations. Examples of these operations are the ones that allow to compose Data
Sets and scalar values or Data Sets and other Data Sets (besides the various kinds of Join operators and the
special operators mentioned above). Examples of non-core operations are the sum between numeric Data
Sets, the concatenation between string Data Sets, the logical operations between boolean Data Sets, the union
operator, some postfix operators like calc, filter, rename (see the Reference Manual).

Most VTL Operators of the standard library (for example numerical, string, logical operators and others) can
operate both on scalar Values and on Data Sets, an thus they have two variants: a scalar and a data set variant.
The scalar variant is part of the VTL core, while the Data Set variant usually not.

Anyway, the VTL users do not need distinguish between core and non-core operators, because in the practice
the use of both these categories of Operators is the same.

2. The user-defined operators are non-standard VTL operators that can be defined by the users in order to
enhance and personalize the language if needed. VTL provides a special operator, called “define operator” (see
the Reference Manual), for the creation of user-defined operators as well as a special syntax to invoke them.

The input parameters

The input parameters may have various goals and in particular:

• identify the model artefacts to be manipulated

• specify possible options for the operator behaviour

• specify additional scalar values required to perform the operator’s behaviour.

For example, in the “Join” operator, the first N parameters identify the Data Sets to be joined while the “using”
parameter specifies the components on which the join must operate.

Depending on the number of the input parameters, the Operators can be classified in:

Unary having just one input parameter

Binary having two input parameters

N-ary having more input parameters

Examples of unary Operators are the change of sign, the minimum, the maximum, the absolute value. Examples of
binary Operators are the common arithmetical operators (+, -, *, /). Examples of N-ary operators are the substring,
the string replacement, the Join. It is also possible the extreme case of operators having zero input parameters (e.g.
an operator returning the current time).

The invocation of VTL operators

Operators have different invocation styles:

• Prefix, only for unary operators, in which the operator is written before the operand; the general forms of
invocation is:

Operator Operand (e.g. -D
2
 which changes the sign of D

2
)

• Infix, only for binary operators. The operator symbol appears between the operands; the general form of
invocation is:

FirstOperand Operator SecondOperand (e.g. D
1
 + D

2
)

• Postfix, only for unary operators. The operator symbol appears after the operand in square brackets and
follows its operand; the general forms of invocation is:

Operand [Operator]

(e.g. DS
2
 [filter M

1
 > 0] which selects from Data Set DS

2
 only the Data Points having values greater than zero

for measure M
1
 and returns such values in the result Data Set.)

Postfix operators are also called “clause operators” or simply “clauses”.

Documentation for VTL v2.1

55

• Functional, for N-ary operators. The operator is invoked using a functional notation; the general form of
invocation is:

Operator(IO
1
, … , IO

N
) where IO

1
, … , IO

N
 are the input operands;

For example, the syntax for the exponentiation is power(base, exponent) and a possible invocation to calculate
the square of the numeric Data Set D

1
 is power(D

1
, 2).

The comma (“,”) is the separator between the operands. Parameter binding is fully positional: in the invocation,
actual parameters are passed to the Operator in the same positional order as the corresponding formal
parameters in the Operator syntax. Parameters can be mandatory or optional: usually the mandatory ones are in
the first positions and the optional ones in the last positions. An underscore (“_”) must be used to denote that
optional operand is omitted in the invocation; for example, this is a possible invocation of Operator1(P

1
,

P*:sub:2, P
3
), where P

2
, P

3
 are optional and P

2
 is omitted:

Operator1(IO
1
 , _ , IO

3
).

One or more unspecified operands in the last positions can be simply omitted (including the relevant commas);
for example, if both P

2
, P

3
 are omitted, the invocation can be simply:

Operator1 (IO
1
).

• Functional with keywords (a functional syntax in which some parameters are denoted by special keywords);
in this case each operator has its own form of invocation, which is described in the reference manual. For
example, a possible invocation of the Join operator is the following:

inner_join (D
1
 , D

2
 using [Id

1
 , Id

2
])

In this example, the Data Sets D
1
 and D

2
 are joined on their Identifiers Id

1
 and Id

2
. The first two parameters do

not have keywords, then the keyword “using” is used to specify the list of Components to join (the square
brackets denote a list). A keyword can be composed of more words, substitutes the comma separator and
identifies the actual parameter of the Operator. The unspecified optional parameters identified by keywords can
be simply omitted (including the relevant keywords, i.e., the underscore “_” is not required). The actual syntax of
this kind of operators and the relevant keywords are described in detail in the Reference Manual.

The syntax for the invocation of the user-defined operators is functional.

Independently of the kind of their syntax, the behaviour of the VTL operators is always functional, i.e. they behave as
high-order mathematical functions, which manipulate one or more input first-order functions (the operand Data Sets)
to produce one output first-order function (the result Data Set).

Level of operation

The VTL Operators can operate at various levels:

• Scalar level, when all the operands and the result are scalar Values

• Data Set level, when at least one operand is a Data Set

• Component level, when the operands and the result are Data Set Components

At the scalar level, the Operators compose scalar literals to obtain other scalar Values. The sum, for example,
allows summing two scalar numbers and obtaining another scalar number. The behaviour at the scalar level depends
on the operator, does not need a general explanation and is described in detail in the Reference Manual. Examples
of operations at the scalar level are:

D
r
 := 3 + 7 3 and 7 are scalar literals of number type

D
r
 := “abcde” || “fghij” “abcde” and “fghij” are scalar literals of string type

As already mentioned, the outcome of an operation at the scalar level is a Data Set without Components that
contains only a scalar Value.

At the Data Set level, the Operators compose Data Sets and possibly scalar literals in order to obtain other Data
Sets. As mentioned, the VTL is designed primarily to operate on Data Sets and produce other Data Sets, therefore
almost all VTL operators can act on Data Sets, apart some few trivial exceptions (e.g. the parenthesis). The
behaviour at the Data Set level deserves a general explanation that is given in the following sections. Examples of
operations at the Data Set level are:

Documentation for VTL v2.1

56

D
r
 := D

1
 + 7 D

1
 is a Data Set with numeric Measures, 7 is a scalar

number

D
r
 := D

1
 + D

2
D

1
 and D

2
 are Data Sets having Measures of number

type

D
r
 := D

3
 || “fghij” D

3
 is a Data Set with string Measures, “fghij” is a scalar

string

D
r
 := D

3
 || D

4
D

3
 and D

4
 are Data Sets having Measures of string

type

At the Component level, the Operators compose Data Set Components and possibly scalar literals in order to
obtain other Data Set Components. A Component level operation may happen only in the context of a Data Set
operation, so that the calculated Component belongs to the calculated Data Set. The behaviour at the Data Set level
deserves a general explanation that is given in the following sections. Examples of operations at the Component
level are:

D
r
 := D

1
 [calc C

3
 := C

1
 + C

2
] C

1
 and C

2
 are numeric Components of C

2

D
r
 := D

1
 [calc C

3
 := C

1
 + 7] C

1
 is a numeric Component of D

1
, 7 is a scalar number

D
r
 := D

3
 [calc C

6
 := C

4
 || C

5
] C

4
 and C

5
 are string Components of D

3

D
r
 := D

3
 [calc C

6
 := C

4
 || “fghij”] C

4
 is a string Component of D

3
, “fghij” is a scalar string

In these examples, the postfix operator calc is applied to the input Data Sets D
1
 and D

3
, takes in input some their

components and produces in output the components C
3
 and C

6
 respectively, which become part of the result Data

Set D
r
.

The operations at a component level are performed row by row and in the context of one specific Data Set, so that
one input Data point results in no more than one output Data Point.

In these last examples the assignment is used both at the Data Set level (when the outcome of the expression is
assigned to the result Data Set) and at the Component level (when the outcome of the operations at the Component
level is assigned to the resulting Components). The assignment at Data Set level can be either persistent or
non-persistent, while the assignment at the Component level can be only non-persistent, because a Component
exists only within a Data Set and cannot be stored on its own.

The Operators’ behaviour

As mentioned, the behaviour of the VTL operators is always functional, i.e., they behave as higher-order
mathematical functions, which manipulate one or more input first-order functions (the operands) to produce one
output first-order function (the result).

The Join operators

The more general and powerful behaviour is supplied by the Join operators, which operates at Data Set level and
allow to compose one or more Data Sets in many possible ways.

In particular, the Join operators allow to:

• match the Data Points of the input Data Sets by means of various matching options (inner/left/full/cross join)
and by specifying the Components to match (“using” clause). For example the sentence:

inner_join D
1
, D

2
 using [reference_date, geo_area]

matches the Data Points of D*:sub:1, D:sub:`2 which have the same values for the Identifiers *reference_date
and geo_area.

• filter the result of the match according to a condition, for example the sentence

filter D
1
 # M

1
 > 0

maintains the matched Data Points for which the Measure M
1
 of D

1
 is positive.

• aggregate according to the values of some Identifier, for example the sentence

group by [Id
1
 , Id

2
]

Documentation for VTL v2.1

57

eliminates the Identifiers save than Id
1
 and Id

2
 and aggregate the Data Points having the same values for Id

1
and Id

2

• combine homonym measures of the matched Data Points according to a formula, for example the sentence

apply D
1
 + D

2

sums the homonymous measures of the matched Data Points of D
1
 and D

2

• calculate new Components (or new values for existing Components) according to the desired formulas, also
assigning or changing the Component role (Identifier, Measure, Attribute), for example:

calc measure M
3
 := M

1
 + M

2
 , attribute A

1
 := A

2
 || A

3

calculates the measure M
3
 and the Attribute A

1
 according to the formulas above

• keep or drop the specified Measures or Attributes, for example the sentence

keep [M
1
 , M

3
, A

1
]

maintains only the specified measures and attributes, instead the sentence

drop [M
2
 , A

2
, A

3
]

drops only the specified measures and attributes

• rename the specified Components, for example:

rename [M
1
 to M

10
 , I

1
 to I

10
]

As shown above, the Join operator, together with the other operators applied at scalar or at Component level, allows
to reproduce the behaviour of the other operators at a Data Set level (save than some special operator) and also to
achieve many other behaviours which are impossible to achieve otherwise.

Anyway, even if the join would cover most of the VTL manipulation needs, the VTL provides for a number of other
Operators that are designed to support the more common manipulation needs in a simpler way, in order to make the
use of the VTL simpler in the more recurrent situations. Their features are naturally more limited than the ones of the
join and a number of default behaviours are assumed.

The following sections explain the more common default behaviours of the Operators other than the Join.

Other operators: default behaviour on Identifiers, Measures and Attributes

The default behaviour of the operators other than the Join, when they operate at Data Set level, is different for
Identifiers, Measures and Attributes.

In fact, unless differently specified, the Operators at Data Set level act only on the Values of the Measures. The
Values of Identifiers are usually left unchanged, save for few special operators specifically aimed at manipulating
Identifiers (for example the operators which make aggregations, either dropping some Identifiers or according the
hierarchical links between the Code Items of an Identifier). The Values of the Attributes, instead, are manipulated by
default through specific Attribute propagation rules explained in a following section.

For example, considering the Transformation D
r
 := ln (D

1
), the operation is applied for each Data Point of D

1
, the

values of the Identifiers are left unchanged and the values of all the Measures are substituted by their natural
logarithm (it is assumed that the Measures of D

1
 are all numerical).

Similarly, considering the simple operation D
r
 := D

1
 + 7, the addition is done for each Data Point of D

1
, the values of

the Identifiers are left unchanged and the number 7 is added to the values of all the Measures (it is assumed that the
Measures of D

1
 are all numerical).

As for the structure, like in the examples above, the Identifiers of the result Data Set D
r
 are the same as the

Identifiers of the input Data Set D
1
 (save for the special operators specifically aimed at manipulating Identifiers), and

by default also the Measures of D
r
 remain the same as D

1
 (save for the operator which change the basic scalar type

of the operand, this case is described in a following section). The Attribute Components of the result depend instead
on the Attribute propagation rule.

In the previous examples, only one Data Set is passed in input to the Operator (other possible operands are not Data
Sets). The operations on more Data Sets, like D

r
 := D

1
 + D

2
, behave in the same way than the operations on one

Data Set, save that there is the additional need of a preliminary matching of the Identifiers of the Data Points of the
input Data Sets: the operation applies on the matched Data Points.

Documentation for VTL v2.1

58

For example, the addition D
1
 + D

2
 above happens between each couple of Data Points, one from D

1
 and the other

from D
2
, whose Identifiers match according to a default rule (which is better explained in a following section). The

values of the homonymous Measures of D
1
 and D

2
 are added, taken respectively from the D

1
 and D

2
 Data Points

(the default rule for composing the measure is better explained in a following section).

The Identifier Components and the Data Points matching

This section describes the default Data Points matching rules for the Operators which operate at Data Set level and
which do not manipulate the Identifiers (for example, the behaviour of the Operators which make aggregations is not
the same, and is described in the Reference Manual).

As shown in the examples above, the actual behaviour depends also on the number of the input Data Sets.

If just one input Data Set is passed to the operator, the operation is applied for each input Data Point and produces a
corresponding output Data Point. This case happens for all the unary operators, which have just on input parameter
and therefore cannot operate on more than one Data Set (e.g. ln (D

1
)), and for the invocations of unary operators in

which just one Data Set is passed to the operator (e.g. D
1
 + 7).

If more input Data Sets are passed to the operator (e.g. D
1
 + D

2
), a preliminary match between the Data Points of

the various input Data Sets is needed, in order to compose their measures (e.g. summing them) and obtain the Data
Points of the result (i.e. D

r
). The default matching rules envisage that the Data Points are matched when the

values of their homonymous Identifiers are the same.

For example, let us assume that D
1
 and D

2
 contain the population and the gross product of the United States and the

European Union respectively and that they have the same Structure Components, namely the Reference Date and
the Measure Name as Identifier Components, and the Measure Value as Measure Component:

D
1
 = United States Data

Ref.Date Meas.Name Meas.Value

2013 Population 200

2013 Gross Prod. 800

2014 Population 250

2014 Gross Prod. 1000

D
2
 = European Union Data

Ref.Date Meas.Name Meas.Value

2013 Population 300

2013 Gross Prod. 900

2014 Population 350

2014 Gross Prod. 1000

The desired result of the sum is the following:

D
r
 = United States + European Union

Ref.Date Meas.Name Meas.Value

2013 Population 500

2013 Gross Prod. 1700

2014 Population 600

2014 Gross Prod. 2000

In this operation, the Data Points having the same values for the Identifier Components are matched, then their
Measure Components are combined according to the semantics of the specific Operator (in the example the values
are summed).

The example above shows what happens under a strict constraint: when the input Data Sets have exactly the
same Identifier Components. The result will also have the same Identifier Components as the operands.

Documentation for VTL v2.1

59

However, various Data Set operations are possible also under a more relaxed constraint, that is when the Identifier
Components of one Data Set are a superset of those of the other Data Set 33.

For example, let us assume that D
1
 contains the population of the European countries (by reference date and

country) and D
2
 contains the population of the whole Europe (by reference date):

D
1
 = European Countries

Ref.Date Country Population

2012 U.K. 60

2012 Germany 80

2013 U.K. 62

2013 Germany 81

D
2
 = Europe

Ref.Date Population

2012 480

2013 500

In order to calculate the percentage of the population of each single country on the total of Europe, the
Transformation will be:

D
r
 := D

1
 / D

2
 * 100

The Data Points will be matched according to the Identifier Components common to D
1
 and D

2
 (in this case only the

Ref.Date), then the operation will take place.

The result Data Set will have the Identifier Components of both the operands:

D
r
 = European Countries / Europe * 100

Ref.Date Country Population

2012 U.K. 12.5

2012 Germany 16.7

2013 U.K. 12.4

2013 Germany 16.2

When the relaxed constraint is applied, therefore, the Data Points are matched when the values of their common
Identifiers are the same.

More formally, let F be a generic n-ary VTL Data Set Operator, D
r
 the result Data Set and D

i
 (i=1,… n) the input Data

Sets, so that:

D
r
 := F(D

1
 , D

2
 , … , D

n
)

The “strict” constraint requires that the Identifier Components of the D
i
 (i=1,… n) are the same. The result D

r
 will also

have the same Identifier components.

The “relaxed” constraint requires that at least one input Data Set D
k
 exists such that for each D

i
 (i=1,… n) the

Identifier Components of D
i
 are a (possibly improper) subset of those of D

k
. The output Data Set D

r
 will have the

same Identifier Components than D
k
.

The n-ary Operator F will produce the Data Points of the result by matching the Data Points of the operands that
share the same values for the common Identifier Components and by operating on the values of their Measure
Components according to its semantics.

The actual constraint for each operator is specified in the Reference Manual.

Naturally, it is possible that not all the Data Sets contain the same combinations of values of the Identifiers to be
matched. In the cases the match does not happen, the operation is not performed and no output Data Point is
produced. In other words, the measures corresponding to of the missing combinations of Values of the Identifiers are
assumed to be unknown and to have the value NULL, therefore the result of the operation is NULL as well and the
output Data Point is not produced.

Documentation for VTL v2.1

60

This default matching behaviour is the same as the one of the inner join Operator, which therefore is able to perform
the same operation. The join operation equivalent to D

1
 + D

2
 is:

inner_join (D
1
 , D

2
 apply D

1
 + D

2
)

Different matching behaviours can be obtained using the other join Operators, for example writing:

full_join (D
1
 , D

2
 apply D

1
 + D

2
)

the full join brings in the output also the combination of Values of the Identifiers which are only in one Data Set, the
operation is applied considering the missing value of the Measure as the neutral element of the operation to be done
(e.g. 0 for the sum, 1 for the product, empty string for the string concatenation …) and the output Data Point is
produced.

The operations on the Measure Components

This section describes the default composition of the Measure Components for the Operators which operate at Data
Set level and which do not change the basic scalar type of the input Measure (for example, the behaviour of the
Operators which convert one type in another, say for example a number in a string, is not the same and is described
in a following section).

As shown in the examples below, the actual behaviour depends also on the number of the input Data Sets and the
number of their Measures.

An Operator applied to one mono-measure Data Set is intended to be applied to the only Measure of the input
Data Set. The result Data Set will have the same Measure Component, whose values are the result of the operation.

For example, let us assume that D
1
 contains the salary of the employees (the only Identifier is the Employee ID and

the only Measure is the Salary):

D
1
 = Salary of Employees

Employee ID Salary

A 1000

B 1200

C 800

D 900

The Transformation D
r
 := D

r
 * 1.10 applies to the only Measure (the salary) and calculates a new value increased by

10%, so the result will be:

D
r
 = Increased Salary of Employees

Employee ID Salary

A 1100

B 1320

C 880

D 990

In case of Operators applied to one multi-measure Data Set, by default the operation is performed on all its
Measures. The result Data Set will have the same Measure Components as the operand Data Set.

For example, given the import, export, and number of operations by reference date:

D
1
 = Import, Export, Operations

Ref.Date Import Export Operations

2011 1000 1200 5000

2012 1300 1100 6400

2013 1200 1300 4800

The Transformation D
r
 := D

1
 * 0.80 applies to all the Measures (e.g. to the Import, the Export and the Balance) and

calculates their 80%:

Documentation for VTL v2.1

61

D
r
 = 80% of Import & Export

Ref.Date Import Export Operations

2011 800 960 4000

2012 1040 880 5120

2013 960 1040 3840

An Operator can be applied only on Measures of a certain basic data type, corresponding to its semantics 34. For
example, the multiplication requires the Measures to be of type number, while the substring will require them to be
string. Expressions that violate this constraint are considered an error.

In general, all the Measures of the Operand Data Set must be compatible with the allowed data types of the
Operator, otherwise (i.e. if at least one Measure is incompatible) the operation is not allowed. The possible input data
types of each operator are specified in the Reference Manual.

Therefore, the operation of the previous example (D
r
 := D

1
 * 0.80), which is assumed to act on all the Measures of

D
1
, would not be allowed and would return an error if D

1
 would contain also a Measure which is not number (e.g.

string).

In case of inputs having Measures of different types, the operation can be done either using the join operators, which
allows to calculate each measure with a different formula (see the calc operator) or, in two steps, first keeping only
the Measures of the desired type and then applying the desired compliant operator; the explanation, as explained in
the following cases.

If there is the need to apply an Operator only to one specific Measure, the membership (#) operator can be used,
which allows keeping just one specific Components of a Data Set. The syntax is: dataset_name#component_name
(for a better description see the corresponding section in the Part 2).

For example, in the Transformation D
r
 := D

1
#Import * 0.80

the operation keeps only the Import and then calculates its 80%):

D
r
 = 80% of the Import

Ref.Date Import

2011 800

2012 1040

2013 960

If there is the need to apply an Operator only to some specific Measures, the keep operator (or the drop) 35 can
be used, which allows keeping in the result (or dropping) the specified Measures (or also Attributes) of the input Data
Set. Their invocations are:

dataset_name [keep component_name , component_name …]

dataset_name [drop component_name, component_name …]

For example, in the Transformation D
r
 := D

1
 [keep Import, Export] * 0.80

the operation keeps only the Import and the Export and then calculates its 80%):

D
r
 = 80% of the Import

Ref.Date Import Export

2011 800 960

2012 1040 880

2013 960 1040

If there is the need to perform some operations on some specific Measures and keep the others measures
unchanged, the calc operator can be used, which allows to calculate each Measure with a dedicated formula leaving
the other Measures as they are. A simple kind of invocation is 36:

dataset_name [calc component_name ::= cmp_expr, component_name ::= cmp_expr …]

The component expressions (cmp_expr) can reference only other components of the input Data Set.

Documentation for VTL v2.1

62

For example, in the Transformation D
r
 := D

1
 [calc Import * 0.80, Export * 0.50]

the operations apply only to Import and Export (and calculate their 80% and 50% respectively), while the Operations
values remain unchanged:

D
r
 = 80% of the Import, 50% of the Export and Operations

Ref.Date Import Export Operations

2011 800 1200 5000

2012 1040 1100 6400

2013 960 1300 4800

In case of Operators applied on more Data Sets, by default the operation is performed between the Measures
having the same names (in other words, on the same Measures). To avoid ambiguities and possible errors, the
input Data Sets must have the same Measures and the result Data Set is assumed to have the same Measures too.

For example, let us assume that D
1
 and D

2
 contain the births and the deaths of the United States and the European

Union respectively.

D
1
 = Births & Deaths of the United States

Ref.Date Births Deaths

2011 1000 1200

2012 1300 1100

2013 1200 1300

D
2
 = Birth & Deaths of the European Union

Ref.Date Births Deaths

2011 1100 1000

2012 1200 900

2013 1050 1100

The Transformation Dr := D1 + D2 will produce:

D
r
 = Births & Deaths of United States + European Union

Ref.Date Births Deaths

2011 2100 2200

2012 2500 2000

2013 2250 2400

The Births of the first Data Set will be summed with the Births of the second to calculate the Births of the result (and
the same for the Deaths).

If there is the need to apply an Operator on Measures having different names, the “rename” operator can be
used to make their names equal (for a complete description of the operator see the corresponding section in the Part
2).

For example, given these two Data Sets:

D
1
 (Residents in the United States)

Ref.Date Residents

2011 1000

2012 1300

2013 1200

D
2
 (Inhabitants of the European Union)

Ref.Date Inhabitants

Documentation for VTL v2.1

63

2011 1100

2012 1200

2013 1050

A Transformation for calculating the population of United States + European Union is:

D
r
 := D

2
 [rename Residents to Population] + D

2
 [rename Inhabitants to Population]

The result will be:

D
r
 (Population of United States + European Union)

Ref.Date Population

2011 2100

2012 2500

2013 1250

Note again that the number and the names of the Measure Components of the input Data Sets are assumed to
match (following their possible renaming), otherwise the invocation of the Operator is considered an error.

To avoid a potentially excessive renaming, and only when just one component is explicitly specified for each dataset
by using the membership notation, the VTL allows the operation even if the names are different. For instance, this
operation is allowed:

D
r
 := D

1
 #Residents + D

2
 #Inhabitants

The result Data Set would have a single Measure named like the Measure of the leftmost operand (i.e. Residents),
which in turn can be renamed, if convenient:

D
r
 := (D

1
 #Residents + D

2
 #Inhabitants)[rename Residents to Population]

The following options and prescription, already described for the operations on just one multi-measure Data Sets, are
valid also for operations on two (or more) multi-measure Data Sets and are repeated here for convenience:

• If there is the need to apply an Operator only to specific Measures, it is possible first to apply the
membership, keep or drop operators to the input Data Sets in order to maintain only the needed Measures, like
explained above for the case of a single input Data Set, and then the desired operation can be performed.

• If there is the need to apply some Operators to some specific Measures and keep the other ones
unchanged, one of the join operators can be used (the choice depends on the desired matching method). The
join operations, in fact, provides also for a calc option which can be invoked and behaves exactly like the calc
operator explained above.

• Even in the case of operations on more than one Data Set, all the Measures of the input Data Sets must be
compatible with the allowed data types of the Operator 37, otherwise (i.e. even if only one Measure is
incompatible) the operation is not allowed.

In conclusion, the operation is allowed if the input Data Sets have the same Measures and these are all compliant
with the input data type of the parameter that the Data Sets are passed for.

Operators which change the basic scalar type

Some operators change the basic data type of the input Measure (e.g. from number to string, from string to date,
from number to boolean …). Some examples are the cast operator that converts the data types, the various
comparison operators whose output is always boolean, the length operator which returns the length of a string.

When the basic data type changes, also the Measure must change, because a Variable (in this case used with the
role of Measure in a Data Structure) has just one type, which is the same wherever the Variable is used 38.

Therefore, when an operator that changes the basic scalar type is applied, the output Measure cannot be the same
as the input Measure. In these cases, the VTL systems must provide for a default Measure Variable for each basic
data type to be assigned to the output Data Set, which in turn can be changed (renamed) by the user if convenient.

The VTL does not prescribe any predefined name or representation for the default Measure Variable of the various
scalar types, leaving different organisations free to using they preferred or already existing ones. Therefore, the

Documentation for VTL v2.1

64

definition of the default Measure Variables corresponding to the VTL basic scalar types is left to the VTL
implementations.

In the VTL manuals, just for explanatory purposes, the following default Measures will be used:

Basic scalar types with default measure variables

Scalar

String (string_var)

Number (num_var) Integer (int_var)

Time (time_var)

Date (date_var)

Time-period (period_var)

Boolean (bool_var)

In some cases, in the examples of the Manuals, the default Boolean variable is also called “condition”.

When the operators that change the basic data type of the input Measure are applied directly at Data Set level, the
VTL do not allow performing multi-Measure operation. In other words, the input Data Set cannot have more than one
Measure. In case it has more Measures, a single Measure must be selected, for example by means of the
membership operator (e.g. dataset_name#measure_name).

The multi-measure operations remain obviously possible when the operators that change the basic data type of the
input Measure are applied at Component Level, for example by using the calc operator.

For example, taking again the example of import, export and number of operations by reference date:

D
1
 = Import_Export_Operations

Ref.Date Import Export Operations

2011 1000 1200 5000

2012 1300 1100 6400

2013 1200 1300 4800

And assuming that the conversion from number to string of all the Measure Variables is desired, the following
statement expressed at Data Set level cast (D

1
 , string) is not allowed because the Data Set D

1
 is multi-measure,

while the following one, which makes the conversion at the Component level, is allowed:

D
1
 [calc

import_string := cast (import, string)
, export_string := cast (export, string)
, operations_string := cast (operations, string)
]

For completeness, it is worth to say that also the various Join operators allow the same operation that, for example
for the inner join, would be written as:

inner_join (D
1
 calc

import_string := cast (import, string)
, export_string := cast (export, string)
, operations_string := cast (operations, string)
)

Documentation for VTL v2.1

65

The join operators is designed primarily to act on many Data Sets and allow applying these operations also when
more Data Sets are joined.

Boolean operators

The Boolean operators (And, Or, Not …) take in input boolean Measures and return booolean Measures. The VTL
Boolean operators behave like the operators that change the basic scalar type: if applied at the Data Set level they
are allowed only on mono-measure Data Sets, if applied at the Component level they are allowed on mono and
multi-measure Data Sets.

Set operators

The Set operators (union, intersection …) apply the classical set operations (union, intersection, difference,
symmetric differences) to the input Data Sets, considering them as mathematical functions (sets of Data Points).

These operations are possible only if the Data Sets to be operated have the same data structure, i.e. the same
Identifiers, Measures and Attributes.

For these operators the rules for the Attribute propagation are not applied and the Attributes are managed like the
Measures.

The Data Points common (or not common) to the input Data Sets are determined by taking into account only the
values of the Identifiers: the common Data Points are the ones, which have the same values for all the Identifiers.

If for a common Data Point one or more dependent variables (Measures and Attributes) have different values in
different Data Sets, the Data Point of the leftmost Data Set are returned in the result.

Behaviour for Missing Data

The awareness of missing data is very important for correct VTL operations, because the knowledge of the Data
Points of the result depends on the knowledge of the Data Points of the operands. For example, assume D

r
 := D

1
 +

D
2
 and suppose that some Data Points of D

2
 are unknown, it follows that the corresponding Data Points of D

r
 cannot

be calculated and are unknown too.

Missing data are explicitly represented when some Measures or Attributes of a Data Point have the value “NULL”,
which denotes the absence of a true value (the “NULL” value is not allowed for the Identifier Components, in order to
ensure that the Data Points are always identifiable).

Missing data may also show as the absence of some expected Data Point in the Data Set. For example, given a
Data Set containing the reports to an international organization relevant to different countries and different dates, and
having as Identifier Components the Country and the Reference Date, this Data Set may lack the Data Points
relevant to some dates (for example the future dates) or some countries (for example the countries that didn’t send
their data) or some combination of dates and countries.

The absence of Data Points, however, does not necessarily denote that the phenomenon under measure is
unknown. In some cases, in fact, it means that a certain phenomenon did not happen.

The handling of missing Data Points in VTL operations can be handled in several ways. One way is to require all
participating Data Points used in a computation to be present and known; this is the correct approach if the absence
of a Data Point means that the phenomenon is unknown and corresponds with the matching method of the inner join
operator. Another way is to allow some, but not all, Data Points to be absent, when the absence does not mean that
the phenomenon is unknown; this corresponds to the behaviour of the left and full join Operator.

On the basic level, most of the scalar operations (arithmetic, logical, and others) return NULL when any of their
arguments is NULL.

The general properties of the NULL are the following ones:

• Data type. The NULL value is the only value of multiple different types (i.e., all the nullable scalar types).

• Testing. A built-in Boolean operator is null can be used to test if a scalar value is NULL.

• Comparisons. Whenever a NULL value is involved in a comparison (>, <, >=, <=, in, not in, between) the result
of the comparison is NULL.

• Arithmetic operations. Whenever a NULL value is involved in a mathematical operation (+, -, *, /, …), the
result is NULL.

Documentation for VTL v2.1

66

• String operations. In operations on Strings, NULL is considered an empty String (“”).

• Boolean operations. VTL adopts 3VL (three-valued logic). Therefore the following deduction rules are applied:

TRUE or NULL → TRUE

FALSE or NULL → NULL

TRUE and NULL → NULL

FALSE and NULL → FALSE

• Conditional operations. The NULL is considered equivalent to FALSE; for example in the control structures of
the type (if (p) -then -else), the action specified in –then is executed if the predicate p is TRUE, while the action
-else is executed if the p is FALSE or NULL.

• Filter clauses. The NULL is considered equivalent to FALSE; for example in the filter clause [filter p], the Data
Points for which the predicate p is TRUE are selected and returned in the output, while the Data Points for
which p is FALSE or NULL are discarded.

• Aggregations. The aggregations (like sum, avg and so on) return one Data Point in correspondence to a set of
Data Points of the input. In these operations, the input Data Points having a NULL value are in general not
considered. In the average, for example, they are not considered both in the numerator (the sum) and in the
denominator (the count). Specific cases for specific operators are described in the respective sections.

• Implicit zero. Arithmetic operators assuming implicit zeros (+,-,*,/) may generate NULL values for the Identifier
Components in particular cases (superset-subset relation between the set of the involved Identifier
Components). Because NULL values are in general forbidden in the Identifiers, the final outcome of an
expression must not contain Identifiers having NULL values. As a momentary exception needed to allow some
kinds of calculations, Identifiers having NULL values are accepted in the partial results. To avoid runtime error,
possible NULL values of the Identifiers have to be fully eliminated in the final outcome of the expression
(through a selection, or other operators), so that the operation of “assignment” (:=) does not encounter them.

If a different behaviour is desired for NULL values, it is possible to override them. This can be achieved with the
combination of the calc clauses and is null operators.

For example, suppose that in a specific case the NULL values of the Measure Component M1 of the Data Set D1
have to be considered equivalent to the number 1, the following Transformation can be used to multiply the Data
Sets D1 and D2, preliminarily converting NULL values of D1.M1 into the number 1. For detailed explanations of calc
and is null refer to the specific sections in the Reference Manual.

D
r
 := D

1
 [M

1
 := if M

1
 is null then 1 else M

1
] * D

2

Behaviour for Attribute Components

Given an invocation of one Operator F, which can be written as D
r
 := F(D

1
 , D

2
 , … , D

n
), and considering that the

input Data Sets D
i
 (i=1,… n) may have any number of Attribute Components, there can be the need of calculating the

desired Attribute Components of D
r
. This Section describes the general VTL assumptions about how Attributes are

handled (the specific behaviours of the various operators are described in the Reference Manual).

It should be noted that the Attribute Components of a Data Set are dependent variables of the corresponding
mathematical function, just like the Measures. In fact, the difference between Attribute and Measure Components
lies only in their meaning: it is implicitly intended that the Measures give information about the real world and the
Attributes about the Data Set itself (or some part of it, for example about one of its measures), however the real uses
of the Attribute Components are very heterogeneous.

The VTL has different default behaviours for Attributes and for Measures, to comply as much as possible with the
relevant manipulation needs.

At the Data Set level, the VTL Operators manipulate by default only the Measures and not the Attributes.

At the Component level, instead, Attributes are calculated like Measures, therefore the algorithms for calculating
Attributes, if any, can be specified explicitly in the invocation of the Operators. This is the behaviour of clauses like
calc, keep, drop, rename, and so on, either inside or outside the join (see the detailed description of these operators
in the Reference Manual).

Documentation for VTL v2.1

67

The Attribute propagation rule

The users that want also to automatize the propagation of the Attributes’ Values when no operation is explicitly
defined can optionally enforce a mechanism, called Attribute Propagation rule, whose behaviour is explained here.
The adoption of this mechanism is optional, users are free to allow the attribute propagation rule or not. The users
that do not want to allow Attribute propagation rules simply will not implement what follows.

The Attribute propagation rule is made of two main components, namely the “virality” and the “default propagation
algorithm”.

The “virality” is a characteristic to be assigned to the Attributes Components which determines if the Attribute is
propagated automatically in the result or not: a “viral” Attribute is propagated while a “non-viral” Attribute is not
(being a default behaviour, the virality is applied when no explicit indication about the keeping of the Attribute is
provided in the expression). If the virality is not defined, the Attribute is considered as non-viral.

The virality is also assigned to the Attribute propagated in the result Data Set. By default, a viral Attribute in the input
generates a homonymous viral Attribute also in the result. Vice- versa, by default a non-viral Attribute in the input
generates a non-viral Attribute also in the result (this happens when the Attribute in the result is calculated through
an explicitly expression but without specifying explicitly its virality). The default assignation of the virality can be
overridden by operations at Component level as mentioned above, for example keep (i.e., to keep a non-viral
Attribute or not to keep a viral one) and calc to alter the virality in the result Data Set, (from viral to non-viral or
vice-versa) 39.

Hence, the default Attribute propagation rule behaves as follows:

• the non-viral Attributes are not kept in the result and their values are not considered;

• the viral Attributes of the operand are kept and are considered viral also in the result; in other words, if an
operand has a viral Attribute V, the result will have V as viral Attribute too;

• the Attributes, like the Measures, are combined according to their names, e.g. the Attributes having the same
names in multiple Operands are combined, while the Attributes having different names are considered as
different Attributes;

• whenever in the application of a VTL operator the input Data Points are not combined as for their Measures
(i.e., one input Data Point can result in no more than one output Data Point), the values of the viral Attributes
are simply copied from the input Data Point to the (possible) output Data Point (obviously, this applies always in
the case of unary Operators which do not make aggregations);

• Whenever in the application of a VTL operator two or more Data Points (belonging to the same or different Data
Sets) are combined as for their Measures to give one output Data Point, the default propagation algorithm
associated to the viral Attribute is applied, producing the Attribute value of the output Data Point. This happens
for example for the unary Operators which aggregate Data Points and for Operators which combine the Data
Points of more input Data Sets; in the latter case, the Attributes having the same names in such Data Sets are
combined.

Extending an example already given for unary Operators, let us assume that D
1
 contains the salary of the employees

of a multinational enterprise (the only Identifier is the Employee ID, the only Measure is the Salary, and there are two
other Components defined as viral Attributes, namely the Currency and the Scale of the Salary):

D
1
 = Salary of Employees

Employee ID Salary Currency Scale

A 1000 U.S. $ Unit

B 1200 € Unit

C 800 yen Thousands

D 900 U.K. Pound Unit

The Transformation D
r
 := D

1
 * 1.10 applies only to the Measure (the salary) and calculates a new value increased by

10%, the viral Attributes are kept and left unchanged, so the result will be:

D
r
 = Increased Salary of Employees

Employee ID Salary Currency Scale

A 1100 U.S. $ Unit

Documentation for VTL v2.1

68

B 1320 € Unit

C 880 yen Thousands

D 990 U.K. Pound Unit

The Currency and the Scale of D
r
 will be considered viral too and therefore would be kept also in case D

r
 becomes

operand of other Transformations.

Another example can be given for operations involving more input Data Sets (e.g. D
r
 := D

1
 + D

2
). Let us assume that

D
1
 and D

2
 contain the births and the deaths of the United States and the Europe respectively, plus a viral Attribute

that qualifies if the Value is estimated or not (having values True or False).

D
1
 = Births & Deaths of the United States

Ref.Date Births Deaths Estimate

2011 1000 1200 False

2012 1300 1100 False

2013 1200 1300 True

D
2
 = Births & Deaths of the European Union

Ref.Date Births Deaths Estimate

2011 1100 1000 False

2012 1200 900 True

2013 1050 1100 False

Suppose that the default propagation algorithm associated to the “Estimate” variable works as follows:

• each value of the Attribute is associated to a default weight;

• the result of the combination is the value having the highest weight;

• if multiple values have the same weight, the result of the combination is the first in lexicographical order.

Assuming the weights 1 for “false” and 2 for “true”, the Transformation D
r
 := D

1
 + D

2
 will produce:

D
r
 = Births & Deaths of United States + European Union

Ref.Date Births Deaths Estimate

2011 2100 2200 False

2012 2500 2000 True

2013 2250 2400 True

Note also that:

• if the attribute Estimate was non-viral in both the input Data Sets, it would not be kept in the result

• if the attribute Estimate was viral only in one Data Set, it would be kept in the result with the same values as in
the viral Data Set

In an expression, the default propagation of the Attributes is performed always in the same order of execution of the
Operators of the expression, which is determined by their precedence and associativity rules, as already explained in
the relevant section.

For example, recalling the example already given example:

D
r
 := D

1
 + D

2
 / (D

3
 – D

4
 / D

5
)

The evaluation of the Attributes will follow the order of composition of the Measures:

I. A(D
4
 / D

5
) (default precedence order)

II. A(D
3
 - I) (explicitly defined order)

III. A(D
2
 / II) (default precedence order)

IV. A(D
1
 + III) (default precedence order)

Documentation for VTL v2.1

69

Properties of the Attribute propagation algorithm

An Attribute default propagation algorithm is a user-defined operator that has a group of Values of an Attribute as
operands and returns just one Value for the same Attribute.

An Attribute default propagation algorithm (here called A) must ensure the following properties (in respect to the
application of a generic Data Set operator “§” which applies on the measures):

Commutative law (1)

A(D
1
 § D

2
) = A(D

2
 § D

1
)

The application of A produces the same result (in term of Attributes) independently of the ordering of the
operands. For example, A(D

1
 + D

2
) = A(D

2
 + D

1
). This may seem quite intuitive for “sum”, but it is important to

point out that it holds for every operator, also for non-commutative operations like difference, division, logarithm
and so on; for example A(D

1
 / D

2
) = A(D

2
 / D

1
)

Associative law (2)

A(D
1
 § A(D

2
 § D

3
)) = A(A(D

1
 § D

2
) § D

3
)

Within one operator, the result of A (in term of Attributes) is independent of the sequence of processing.

Reflexive law (3)

A(§(D
1
)) = A(D

1
)

The application of A to an Operator having a single operand gives the same result (in term of Attributes) that its
direct application to the operand (in fact the propagation rule keeps the viral attributes unchanged).

Having these properties in place, it is always possible to avoid ambiguities and circular dependencies in the
determination of the Attributes’ values of the result. Moreover, it is sufficient without loss of generality to consider
only the case of binary operators (i.e. having two Data Sets as operands), as more complex cases can be easily
inferred by applying the VTL Attribute propagation rule recursively (following the order of execution of the operations
in the VTL expression).

32 A high-order function is a function which takes one or more other functions as arguments and/or
provides another function as result.

33 This corresponds to the “outer join” form of the join expressions, explained in details in the
Reference Manual.

34 As obvious, the data type depends on the parameter for which the Data Set is passed

35 to preserve the functional behaviour keep and drop can be applied only on Measures and
Attributes, for a deeper description of these operators see the corresponding section in the
Reference Manual

36 The calc Operator can be used also to calculate Attributes: for a more complete description of
this operator see the corresponding section in the Reference Manual

37 As obvious, the data type depends on the parameters for which the Data Set are passed

38 In fact according to the IM, a Variable takes values in one Value Domain which represents just
one basic data type, independently of where the Variable or the Value Domain are used (e.g. if
they have the same type everywhere)

39 In particular, the keep clause allows the specification of whether or not an attribute is kept in the
result while the calc clause makes it possible to define calculation formulas for specific
attributes. The calc can be used both for Measures and for Attributes and is a unary Operator,
e.g. it may operate on Components of just one Data Set to obtain new Measures / Attributes.

Governance, other requirements and future work
The SDMX Technical Working Group, as mandated by the SDMX Secretariat, is responsible for ensuring the
technical maintenance of the Validation and Transformation Language through a dedicated VTL task force. The VTL
task force is open to the participation of experts from other standardisation communities, such as DDI and GSIM, as
the language is designed to be usable within different standards.

Documentation for VTL v2.1

70

The governance of the extensions

According to the requirements, it is envisaged that the language can be enriched and made more powerful in future
versions according to the evolution of the business needs. For example, new operators and clauses can be added,
and the language syntax can be upgraded.

The VTL governance body will take care of the evolution process, collecting and prioritising the requirements,
planning and designing the improvements, releasing future VTL versions.

The release of new VTL versions is considered as the preferred method of fulfilling the requirements of the user
communities. In this way, the possibility of exchanging standard validation and transformation rules would be
preserved to the maximum extent possible.

In order to fulfil specific calculation features not yet supported, the VTL provides for an operator which allows to
define new custom operators by means of the existing ones and another operator (Evaluate) whose purpose is to
invoke an external calculation function (routine), provided that this is compatible with the VTL IM, basic principles and
data types.

As already mentioned, because the user-defined operators does not belong to the standard library, they are not
standard VTL operators and are applicable only in the context in which they have been defined. In particular, if there
is the need of applying user-defined operators in other contexts, their definitions need to be pre-emptively shared.

The operator “Evaluate” (also “Eval”) allows defining and making customized calculations (also reusing existing
routines) without upgrading or extending the language, because the external calculation function is not considered as
an additional operator. The expressions containing Eval are standard VTL expressions and can be parsed through a
standard parser. For this reason, when it is not possible or convenient to use other VTL operators, Eval is the
recommended method of customizing the language operations.

However, as explained in the section “Extensibility and Customizability” of the “General Characteristics of VTL”
above, calling external functions has some drawbacks in respect to the use of the proper VTL operators. The
transformation rules would be not understandable unless such external functions are properly documented and
shared and could become dependent on the IT implementation, less abstract and less user oriented. Moreover, the
external functions cannot be parsed (as if they were built through VTL operators) and this could make the
expressions more error-prone. External routines should be used only for specific needs and in limited cases,
whereas widespread and generic needs should be fulfilled through the operators of the language.

While the “Eval” operator is part of VTL, the invoked external calculation functions are not. Therefore, they are
considered as customized parts under the governance, and are responsibility and charge of the organizations that
use it.

Organizations possibly extending VTL through non-standard operators/clauses would operate on their own total risk
and responsibility for any possible maintenance activity deriving from VTL modifications.

As mentioned, whilst an Organisation adopting VTL can extend its own library by defining customized parts and by
implementing external routines, on its own total responsibility, in order to improve the standard language for specific
purposes (e.g. for supporting possible algorithms not permitted by the standard part), it is important that the
customized parts remain compliant with the VTL IM and the VTL fundamentals. Adopting Organizations are totally in
charge of any activity for maintaining and sharing their customized parts. Adopting Organizations are also totally in
charge of any possible maintenance activity to maintain the compliance between their customized parts and the
possible standard VTL future evolution.

Relations with the GSIM Information Model

As already said, GSIM artefacts are used as much as possible for the VTL IM. Some differences between this model
and GSIM are due to the fact that, in the VTL IM, both unit and dimensional data are considered as first-order
mathematical functions having independent and dependent variables and are treated in the same way.

As explained later, VTL is inspired by GSIM as much as possible, in order to provide a formal model at business level
against which other information models can be mapped, and to facilitate the implementation of VTL with standards
like SDMX, DDI and possibly others.

GSIM faces many aspects that are out of the VTL scope; the latter uses only those GSIM artefacts that are strictly
related to the representation of validations and transformations. The referenced GSIM artefacts have been assessed
against the requirements for VTL and, in some cases, adapted or improved as necessary, as explained earlier. No
assessment was made about those GSIM artefacts that are out of the VTL scope.

Documentation for VTL v2.1

71

In respect to GSIM, VTL considers both unit and dimensional data as mathematical functions having a certain
structure in term of independent and dependent variables. This leads to a simplification, as unit and dimensional data
can be managed in the same way, but it also introduces some slight differences in data representation. The aim of
the VTL Task Force is to propose the adoption of this adjustment for the next GSIM versions.

Data Sets and Data Structures

The VTL Data Set and Data Structure artefacts are similar to the corresponding GSIM artefact. VTL, however, does
not make a distinction between Unit and Dimensional Data Sets and Data Structures.

In order to explain the relationships between VTL and GSIM, the distinction between Unit and Dimensional Data Sets
can be introduced virtually even in the VTL artefacts. In particular, the GSIM Data Set may be a GSIM Dimensional
Data Set or a GSIM Unit Data Set, while a VTL Data Set may (virtually) be:

either a (virtual) VTL Dimensional Data Set: a kind of (Logical) Data Set describing groups of units of a
population that may be composed of many units. This (virtual) artefact would be the same as the GSIM
Dimensional Data Set;

or a (virtual) VTL Unit Data Set: a kind of (Logical) Data Set describing single units of a population. This (virtual)
artefact would be the same as the Unit Data Record in GSIM, which has its own structure and can be thought of
as a mathematical function. The difference is that the VTL Unit Data Set would not correspond to the GSIM Unit
Data Set, because the latter cannot be considered as a mathematical function: in fact, it can have many GSIM
Unit Data Records with different structures.

A similar relationship exists between VTL and GSIM Data Structures. In particular, introducing in VTL the virtual
distinction between Unit and Dimensional Data Structures, while a GSIM Data Structure may be a GSIM Dimensional
Data Structure or a GSIM Unit Data Structure, a VTL Data Structure may (virtually) be:

either a (virtual) VTL Dimensional Data Structure: the structure of (0…n) Dimensional Data Sets. This artefact
would be the same as in GSIM;

or a (virtual) VTL Unit Data Structure: the structure of (0…n) Unit Data Sets. This artefact would be the same
as the Logical Record in GSIM, which corresponds to a single structure and can be thought as the structure of a
mathematical function. The difference is that the VTL Unit Data Structure would not correspond to the GSIM Unit
Data Structure, because the latter cannot be considered as the structure of a mathematical function: in fact, it
can have many Logical Records with different structures.

The following diagram summarizes the relationships between the GSIM and the VTL Data Sets and Data Structures,
according to the explanation given above.

Please take into account that the distinction between Dimensional and Unit Data Set and Data Structure is not used
by the VTL language and is not part of the VTL IM. This virtual distinction is highlighted here and in the diagram
below just for clarifying the mapping of the VTL IM with GSIM and DDI.

GSIM – VTL mapping diagram about data structures:

Documentation for VTL v2.1

72

An error has occured : java.lang.IllegalStateException
A complex system designed from scratch never works and cannot be patched up to make it work.

PlantUML (1.2025.9) has crashed.

This version of PlantUML is 141 days old, so you should
consider upgrading from https://plantuml.com/download
Diagram size: 38 lines / 1558 characters.

PlantUML (1.2025.9) cannot parse result from dot/GraphViz.

Please go to https://plantuml.com/graphviz-dot to check your GraphViz version.

Java Runtime: OpenJDK Runtime Environment
JVM: OpenJDK 64-Bit Server VM
Default Encoding: UTF-8
Language: en
Country: null

PLANTUML_LIMIT_SIZE: 4096

This may be caused by :
- a bug in PlantUML
- a problem in GraphViz

You should send this diagram and this image to plantuml@gmail.com or
post to https://plantuml.com/qa to solve this issue.
You can try to turn around this issue by simplifing your diagram.

java.lang.IllegalStateException
net.sourceforge.plantuml.svek.DotStringFactory.solve(DotStringFactory.java:341)
net.sourceforge.plantuml.svek.GraphvizImageBuilder.buildImage(GraphvizImageBuilder.java:285)
net.sourceforge.plantuml.svek.CucaDiagramFileMakerSvek.createFileInternal(CucaDiagramFileMakerSvek.java:104)
net.sourceforge.plantuml.svek.CucaDiagramFileMakerSvek.createFile(CucaDiagramFileMakerSvek.java:70)
net.atmp.CucaDiagram.exportDiagramInternal(CucaDiagram.java:489)
net.sourceforge.plantuml.classdiagram.ClassDiagram.exportDiagramInternal(ClassDiagram.java:85)
net.sourceforge.plantuml.UmlDiagram.exportDiagramNow(UmlDiagram.java:119)
net.sourceforge.plantuml.AbstractPSystem.exportDiagram(AbstractPSystem.java:220)
net.sourceforge.plantuml.SourceStringReader.outputImage(SourceStringReader.java:189)
net.sourceforge.plantuml.Pipe.generateDiagram(Pipe.java:108)
net.sourceforge.plantuml.Pipe.managePipe(Pipe.java:99)
net.sourceforge.plantuml.Run.main(Run.java:180)

Diagram source: (Use http://zxing.org/w/decode.jspx to decode the qrcode)

Documentation for VTL v2.1

73

Value Domains

The VTL IM allows defining the Value Domains (as in GSIM) and their subsets (not explicitly envisaged in GSIM),
needed for validation purposes. In order to be compliant, the GSIM artefacts are used for modelling the Value
Domains and a similar structure is used for modelling their subsets. Even in this case, the VTL task force will propose
the explicit introduction of the Value Domain Subsets in future GSIM versions.

Transformation model and Business Process Model

VTL is based on a model for defining mathematical expressions that is called “Transformation model”. GSIM does
not have a Transformation model, which is however available in the SDMX IM. The VTL IM has been built on the
SDMX Transformation model, with the intention of suggesting its introduction in future GSIM versions.

Some misunderstanding may arise from the fact that GSIM, DDI, SDMX and other standards also have a Business
Process model. The connection between the Transformation model and the Business Process model has been
neither analysed nor modelled in VTL 1.0. One reason is that the business process models available in GSIM, DDI
and SDMX are not yet fully compatible and univocally mapped.

It is worth nothing that the Transformation and the Business Process models address different matters. In fact, the
former allows defining validation and calculation rules in the form of mathematical expressions (like in a spreadsheet)
while the latter allows defining a business process, made of tasks to be executed in a certain order. The two models
may coexist and be used together as complementary. For example, a certain task of a business process (say the
validation of a data set) may require the execution of a certain set of validation rules, expressed through the
Transformation model used in VTL. Further progress in this reconciliation can be part of the future work on VTL.

Annex 1 – EBNF
The VTL language is also expressed in EBNF (Extended Backus-Naur Form).

EBNF is a standard 40 meta-syntax notation, typically used to describe a Context-Free grammar and represents an
extension to BNF (Backus-Naur Form) syntax. Indeed, any language described with BNF notation can also be
expressed in EBNF (although expressions are typically lengthier).

Intuitively, the EBNF consists of terminal symbols and non-terminal production rules. Terminal symbols are the
alphanumeric characters (but also punctuation marks, whitespace, etc.) that are allowed singularly or in a combined
fashion. Production rules are the rules governing how terminal symbols can be combined in order to produce words
of the language (i.e. legal sequences).

More details can be found at http://en.wikipedia.org/wiki/Extended_Backus–Naur_Form

Properties of VTL grammar

VTL can be described in terms of a Context-Free grammar 41, with productions of the form V■ w, where V is a single
non-terminal symbol and w is a string of terminal and non-terminal symbols.

VTL grammar aims at being unambiguous. An ambiguous Context-Free grammar is such that there exists a string
that can be derived with two different paths of production rules, technically with two different leftmost derivations.

In theoretical computer science, the problem of understanding if a grammar is ambiguous is undecidable. In practice,
many languages adopt a number of strategies to cope with ambiguities. This is the approach followed in VTL as well.
Examples are the presence of associativity and precedence rules for infix operators (such as addition and
subtraction), and the existence of compulsory else branch in if-then-else operator.

These devices are reasonably good to guarantee the absence of ambiguity in VTL grammar. Indeed, real parser
generators (for instance YACC 42), can effectively exploit them, in particular using the mentioned associativity and
precedence constrains as well as the relative ordering of the productions in the grammar itself, which solves
ambiguity by default.

40 ISO/IEC 14977

41 http://en.wikipedia.org/wiki/Context-free_grammar

42 http://en.wikipedia.org/wiki/Yacc

PDF Version

Documentation for VTL v2.1

74

http://en.wikipedia.org/wiki/Terminal_symbol
http://en.wikipedia.org/wiki/Extended_Backus
http://en.wikipedia.org/wiki/Context-free_grammar
http://en.wikipedia.org/wiki/Yacc
file:///vtl/2.1/html/pdf/VTL_2.1_DOCS.pdf

Reference Manual

Foreword
The Task force for the Validation and Transformation Language (VTL), created in 2012-2013 under the initiative of
the SDMX Secretariat, is pleased to present the version 2.1 of VTL.

The SDMX Secretariat launched the VTL work at the end of 2012, moving on from the consideration that SDMX
already had a package for transformations and expressions in its information model, while a specific implementation
language was missing. To make this framework operational, a standard language for defining validation and
transformation rules (operators, their syntax and semantics) has been adopted.

The VTL task force was set up early in 2013, composed of members of SDMX, DDI and GSIM communities and the
work started in summer 2013. The intention was to provide a language usable by statisticians to express logical
validation rules and transformations on data, described as either dimensional tables or unit-record data. The
assumption is that this logical formalization of validation and transformation rules could be converted into specific
programming languages for execution (SAS, R, Java, SQL, etc.), and would provide at the same time, a “neutral”
business-level expression of the processing taking place, against which various implementations can be mapped.
Experience with existing examples suggests that this goal would be attainable.

An important point that emerged is that several standards are interested in such a kind of language. However, each
standard operates on its model artefacts and produces artefacts within the same model (property of closure). To
cope with this, VTL has been built upon a very basic information model (VTL IM), taking the common parts of GSIM,
SDMX and DDI, mainly using artefacts from GSIM, somewhat simplified and with some additional detail. In this way,
existing standards (GSIM, SDMX, DDI, others) would be allowed to adopt VTL by mapping their information model
against the VTL IM. Therefore, although a work-product of SDMX, the VTL language in itself is independent of SDMX
and will be usable with other standards as well. Thanks to the possibility of being mapped with the basic part of the
IM of other standards, the VTL IM also makes it possible to collect and manage the basic definitions of data
represented in different standards.

For the reason described above, the VTL specifications are designed at logical level, independently of any other
standard, including SDMX. The VTL specifications, therefore, are self-standing and can be implemented either on
their own or by other standards (including SDMX).

The first public consultation on VTL (version 1.0) was held in 2014. Many comments were incorporated in the VTL
1.0 version, published in March 2015. Other suggestions for improving the language, received afterwards, fed the
discussion for building the draft version 1.1, which contained many new features, was completed in the second half
of 2016 and provided for public consultation until the beginning of 2017.

The high number and wide impact of comments and suggestions induced a high workload on the VTL TF, which
agreed to proceed in two steps for the publication of the final documentation. The first step has been dedicated to
fixing some high-priority features and making them as much stable as possible; given the high number of changes, it
was decided that the new version should be considered as a major one and thus named VTL 2.0.

The second step, taking also into consideration that some VTL implementation initiatives are already in place, is
aimed at acknowledging and fixing other features considered of minor impact and priority, without affecting the
features already published or the possible relevant implementations.

In parallel with the work for designing the new VTL version, the task force has been involved in the SDMX
implementation of VTL, aiming at defining formats for exchanging rules and developing web services to retrieve
them; the new features have been included in the SDMX 3.0 package.

The VTL 2.1 package contains the general VTL specifications, independently of the possible implementations of
other standards; it includes:

a. The User Manual, highlighting the main characteristics of VTL, its core assumptions and the information model
the language is based on;

b. The Reference Manual, containing the full library of operators ordered by category, including examples;

c. eBNF notation (extended Backus-Naur Form) which is the technical notation to be used as a test bed for all the
examples.

d. A Technical Notes document, containing some guidelines for VTL implementation.

The latest version of VTL is freely available online at https://sdmx.org/?page_id=5096

Reference Manual

75

https://sdmx.org/?page_id=5096

Acknowledgements

The VTL specifications have been prepared thanks to the collective input of experts from Bank of Italy, Bank for
International Settlements (BIS), European Central Bank (ECB), Eurostat, ILO, INEGI-Mexico, INSEE-France,
ISTAT-Italy, OECD, Statistics Netherlands, and UNESCO. Other experts from the SDMX Technical Working Group,
the SDMX Statistical Working Group and the DDI initiative were consulted and participated in reviewing the
documentation.

The list of contributors and reviewers includes the following experts: Sami Airo, Foteini Andrikopoulou, David
Barraclough, Luigi Bellomarini, Marc Bouffard, Maurizio Capaccioli, Franck Cotton, Vincenzo Del Vecchio, Fabio Di
Giovanni, Jens Dossé, Heinrich Ehrmann, Bryan Fitzpatrick, Tjalling Gelsema, Luca Gramaglia, Arofan Gregory,
Gyorgy Gyomai, Edgardo Greising, Dragan Ivanovic, Angelo Linardi, Juan Munoz, Chris Nelson, Stratos
Nikoloutsos, Antonio Olleros, Stefano Pambianco, Marco Pellegrino, Michele Romanelli, Juan Alberto Sanchez,
Roberto Sannino, Angel Simon Delgado, Daniel Suranyi, Olav ten Bosch, Laura Vignola, Fernando Wagener and
Nikolaos Zisimos.

Feedback and suggestions for improvement are encouraged and should be sent to the SDMX Technical Working
Group (twg@sdmx.org).

Introduction
This document is the Reference Manual of the Validation and Transformation Language (also known as ‘VTL’)
version 2.1.

The VTL 2.1 library of the Operators is described hereinafter.

VTL 2.1 consists of two parts: the VTL Definition Language (VTL-DL) and the VTL Manipulation Language (VTL-ML).

This manual describes the operators of VTL 2.1 in detail (both VTL-DL and VTL-ML) and is organized as follows.

First, in the following Chapter “Overview of the language and conventions”, the general principles of VTL are
summarized, the main conventions used in this manual are presented and the operators of the VTL-DL and VTL-ML
are listed. For the operators of the VTL-ML, a table that summarizes the “Evaluation Order” (i.e., the precedence
rules for the evaluation of the VTL-ML operators) is also given.

The following two Chapters illustrate the operators of VTL-DL, specifically for:

• the definition of rulesets and their rules, which can be invoked with appropriate VTL-ML operators (e.g. to check
the compatibility of Data Point values …);

• the definition of custom operators/functions of the VTL-ML, meant to enrich the capabilities of the VTL-ML
standard library of operators.

The illustration of VTL-ML begins with the explanation of the common behaviour of some classes of relevant VTL-ML
operators, towards a good understanding of general language characteristics, which we factor out and do not repeat
for each operator, for the sake of compactness.

The remainder of the document illustrates each single operator of the VTL-ML and is structured in chapters, one for
each category of Operators (e.g., general purpose, string, numeric …). For each Operator, there is a specific section
illustrating the syntax, the semantics and giving some examples.

Overwiew of the language and conventions

Introduction

The Validation and Transformation Language is aimed at defining Transformations of the artefacts of the VTL
Information Model, as more extensively explained in the User Manual.

A Transformation consists of a statement which assigns the outcome of the evaluation of an expression to an
Artefact of the IM. The operands of the expression are IM Artefacts as well. A Transformation is made of the
following components:

• A left-hand side, which specifies the Artefact which the outcome of the expression is assigned to (this is the
result of the Transformation);

• An assignment operator, which specifies also the persistency of the left hand side. The assignment operators
are two, the first one for the persistent assignment (<-) and the other one for the non-persistent assignment (:=).

Reference Manual

76

mailto:twg@sdmx.org

• A right-hand side, which is the expression to be evaluated, whose inputs are the operands of the
Transformation. An expression consists in the invocation of VTL Operators in a certain order. When an
Operator is invoked, for each input Parameter, an actual argument (operand) is passed to the Operator, which
returns an actual argument for the output Parameter. In the right hand side (the expression), the Operators can
be nested (the output of an Operator invocation can be input of the invocation of another Operator). All the
intermediate results in an expression are non-persistent.

Examples of Transformations are:

DS_np := (DS_1 - DS_2) * 2;
DS_p <- if DS_np >= 0 then DS_np else DS_1;

(DS_1 and DS_2 are input Data Sets, DS_np is a non persistent result, DS_p is a persistent result, the invoked
operators (apart the mentioned assignments) are the subtraction (-), the multiplication (*), the choice
(if…then…else), the greater or equal comparison (>=) and the parentheses that control the order of the operators’
invocations.

Like in the example above, Transformations can interact with one another through their operands and results; in fact
the result of a Transformation can be operand of one or more other Transformations. The interacting
Transformations form a graph that is oriented and must be acyclic to ensure the overall consistency, moreover a
given Artefact cannot be result of more than one Transformation (the consistency rules are better explained in the
User Manual, see VTL Information Model / Generic Model for Transformations / Transformations consistency). In this
regard, VTL Transformations have a strict analogy with the formulas defined in the cells of the spreadsheets.

A set of more interacting Transformations is usually needed to perform a meaningful and self-consistent task like for
example the validation of one or more Data Sets. The smaller set of Transformations to be executed in the same run
is called Transformation Scheme and can be considered as a VTL program.

Transformations do not necessarily need to be written in sequence like a classical software program. In fact, they are
associated to the Artefacts they calculate, like it happens in the spreadsheets (each spreadsheet’s formula is
associated to the cell it calculates).

Nothing prevents, however, from writing the Transformations in sequence, taking into account that the
Transformations are not necessarily performed in the same order as they are written, because the order of execution
depends on their input-output relationships (a Transformation which calculates a result that is operand of other
Transformations must be executed first). For example, if the two Transformations of the example above were written
in the reverse order:

(i) DS_p <- if DS_np >= 0 then DS_np else DS_1;
(ii) DS_np := (DS_1 - DS_2) * 2;

All the same the Transformation (ii) would be executed first, because it calculates the Data Set DS_np which is an
operand of the Transformation (i).

When Transformations are written in sequence, a semicolon (;) is used to denote the end of a Transformation and
the beginning of the following one.

Conventions for writing VTL Transformations

When more Transformations are written in a text, the following conventions apply.

Transformations:

• A Transformation can be written in one or more lines, therefore the end of a line does not denote the end of a
Transformation.

• The end of a Transformation is denoted by a semicolon (;).

Comments:

Comments can be inserted within VTL Transformations using the following syntaxes.

• A multi-line comment is embedded between /* and */ and, obviously, can span over several lines:

/* multi-line
comment text */

• A single-line comment follows the symbol // up to the next end of line:

Reference Manual

77

// text of a comment on a single line

• A sequence of spaces, tabs, end-of-line characters or comments is considered as a single space.

• The characters /* , */ , // and the whitespaces can be part of a string literal (within double quotes) but in such a
case they are part of the string characters and do not have any special meaning.

Examples of valid comments:

Example 1:

* this is a multi-line
Comment */

Example 2:

// this is single-line comment

Example 3:

DS_r <- /* A is a dataset */ A + /* B is a dataset */ B ;

(for the VTL this statement is the Transformation DS_r <- A + B ;)

Example 4:

DS_r := DS_1 // my comment
 * DS_2 ;

(for the VTL this statement is the Transformation DS_r := DS_1 * DS_2 ;)

Typographical conventions

The Reference Manual (this manual) uses the normal font Cambria for the text and the other following typographical
conventions:

Convention Description

Italics Cambria Basic scalar data types (in the text)
e.g. “…must have one Identifier of type time_period. If the Data Set…”

Bold Arial Keywords (in the description of the syntax and in the text)
e.g. Rule ::={ ruleName : } { when antecedentCondition then }
consequentCondition
{ errorcode errorCode }
{ errorlevel errorLevel }
e.g. “…The rename operator allows to rename one or more Components…”

Italics Arial Optional Parameter (in the description of the syntax)
e.g. substr (op, start, length)

Underlined Arial Sub-expressions

Normal font Arial
• The operator’s syntax (excluded the keywords, the optional Parameters and the

sub-expressions)

e.g. length (“Hello, World!”)

• The examples of invocation of the operators

e.g. length (“Hello, World!”)

• Optional and Mandatory Parameters (in the text)
e.g. “…If comp is a Measure in op, then in the result …”

Reference Manual

78

Abbreviations for the names of the artefacts

The names of the artefacts operated by the VTL-ML come from the VTL IM. In their turn, the names of the VTL IM
artefacts are derived as much as possible from the names of the GSIM IM artefacts, as explained in the User
Manual.

If the complete names are long, the VTL IM suggests also a compact name, which can be used in place of the
complete name in case there is no ambiguity (for example, “Set” instead than “Value Domain Subset”, “Component”
instead than “Data Set Component” and so on); moreover, to make the descriptions more compact, a number of
abbreviations, usually composed of the initials (in capital case) or the first letters of the words of artefact names, are
adopted in this manual:

Complete name Compact name Abbreviation

Data Set Data Set DS

Data Point Data Point DP

Identifier Component Identifier Id

Measure Component Measure Me

Attribute Component Attribute At

Data Set Component Component Comp

Value Domain Subset Subset or Set Set

Value Domain Domain VD

A positive integer suffix (with or without an underscore) can be added in the end to distinguish more than one
instance of the same artefact (e.g., DS_1, DS_2, …, DS_N, Me1, Me2, …MeN). The suffix “r” stands for the result of
a Transformation (e.g., DS_r).

Conventions for describing the operators’ syntax

Each VTL operator has an explanatory name, which recalls the operator function (e.g., “Greater than”) and a
syntactical symbol, which is used to invoke the operator (e.g., “>”). The operator symbol may also be alphabetic,
always lowercase (e.g., round).

In the VTL-DL, the operator symbol is the keyword define followed by the name of the object to be defined. The
complete operator symbol is therefore a compound lowercase sentence (e.g. define operator).

In the VTL-ML, the operator symbol does not contain spaces and may be either a sequence of special characters
(like +, -, >=, <= and so on) or a text keyword (e.g., and, or, not). The keyword may be compound with underscores
as separators (e.g., exists_in).

Each operator has a syntax, which is a set of formal rules to invoke the operator correctly. In this document, the
syntax of the operators is formally described by means of a meta-syntax which is not part of the VTL language, but
has only presentation purposes.

The meta-syntax describes the syntax of the operators by means of meta-expressions, which define how the
invocations of the operators must be written. The meta-expressions contain the symbol of the operator (e.g., “join”),
the possible other keywords to denote special parameters (e.g., using), other symbols to be used (e.g., parentheses,
commas), the named formal parameters (e.g., multiplicand and multiplier for the multiplication).

As for the typographic stile, in order to distinguish between the syntax symbols (which are used in the operator
invocations) and meta-syntax symbols (used just for explanatory purposes, and not actually used in invocations), the
syntax symbols are in boldface (i.e., the operator symbol, the special keywords, the possible parenthesis, commas
an so on). The names of the generic operands (e.g., multiplicand, multiplier) are in Roman type, even if they are part
of the syntax.

The meta-expression can be very simple, for example the meta-expression for the addition is:

op1 + op2

This means that the addition has two operands (op1, op2) and is invoked by specifying the name of the first
addendum (op1), then the addition symbol (+) followed by the name of the second addendum (op2).

Reference Manual

79

In this example, all the three parts of the meta-expression are fixed. In other cases, the meta-expression can be
more complex and made of optional, alternative or repeated parts.

In the simple cases, the optional parts are denoted by using the italic face, for example:

substr (op , start , length)

The expression above implies that in the substr operator the start and length operands are optional. In the
invocation, a non-specified optional operand is substituted by an underscore or, if it is in the end of the invocation,
can be omitted. Hence the following syntaxes are all formally correct:

substr (op, start, length)

substr (op, start)

substr (op, _ , length)

substr (op)

In more complex cases, a regular expression style is used to denote the parts (sub-expressions) of the
meta-expression that are optional, alternative or repeated. In particular, braces denote a sub-expression; a vertical
bar (or sometimes named “pipe”) within braces denotes possible alternatives; an optional trailing number, following
the braces, specifies the number of possible repetitions.

• non-optional : non-optional sub-expression (text without braces)

• {optional} : optional sub-expression (zero or 1 occurrence)

• {non-optional}1 : non-optional sub-expression (just 1 occurrence)

• {one-or-more}+ : sub-expression repeatable from 1 to many occurrences

• {zero-or-more}* : sub-expression repeatable from 0 to many occurrences

• { part1 | part2 | part3 } : optional alternative sub-expressions (zero or 1 occurrence)

• { part1 | part2 | part3 }1 : alternative sub-expressions (just 1 occurrence)

• { part1 | part2 | part3 }+: alternative sub-expressions, from 1 to many occurrences

• { part1 | part2 | part3 }* : alternative sub-expressions, from 0 to many occurrences

Moreover, to improve the readability, some sub-expressions (the underlined ones) can be referenced by their names
and separately defined, for example a meta-expression can take the following form:

sub-expr1-text sub-expr2-name … sub-exprN-1-name sub-exprN-text

sub-expr2-name ::= sub-expr2-text

… possible others …

sub-exprN-1-name ::= sub-exprN-1-text

In this representation of a meta-expression:

• The first line is the text of the meta-expression

• sub-expr
1
-text, sub-expr

N
-text are sub-expressions directly written in the meta-expression

• sub-expr2-name, … sub-exprN-1-name are identifiers of sub-expressions.

• sub-expr
2
-text, … sub-expr

N-1
-text are subexpression written separately from the meta-expression.

• The symbol ::= means “is defined as” and denotes the assignment of a sub-expression-text to a
sub-expression-name.

The following example shows the definition of the syntax of the operators for removing the leading and/or the trailing
whitespaces from a string:

Meta-expression ::= { trim | ltrim | rtrim }1 (op)

The meta-expression above synthesizes that:

• trim, ltrim, rtrim are the operators’ symbols (reserved keywords);

• (,) are symbols of the operators syntax (reserved keywords);

• op is the only operand of the three operators;

Reference Manual

80

• “{ }1” and “|” are symbols of the meta-syntax; in particular “|” indicates that the three operators are alternative (a
single invocation can contain only one of them) and “{ }1” indicates that a single invocation contains just one of
the shown alternatives;

From this template, it is possible to infer some valid possible invocations of the operators:

ltrim (DS_2)
rtrim (DS_3)

In these invocations, ltrim and rtrim are the symbols of the invoked operator and DS_2 and DS_3 are the names of
the specific Data Sets which are operands respectively of the former and the latter invocation.

Description of data types of operands and result

This section contains a brief legenda of the meaning of the symbols used for describing the possible types of
operands and results of the VTL operators. For a complete description of the VTL data types, see the chapter “VLT
Data Types” in the User Manual.

Symbol Meaning Example Example meaning

parameter :: type2 parameter is of the type2 param1 :: string param1 is of type string

type1 | type2 alternative types dataset | component
| scalar

either dataset or
component or scalar

type1 < type2 > scalar type2 restricts type1 measure <string> Measure of string type

type1 _ (underscore) type1 can appear just once measure <string> _ just one string Measure

type1 elementName predetermined element of
type1

measure <string>
my_text

just one string Measure
named “my_text”

type1 _ + type1 can appear one or
more times

measure <string>_+ one or more string
Measures

type1 _ * type1 can appear zero, one
or more times

measure <string>_* zero, one or more string
Measures

dataset { type_constraint } Type_constraint restricts the
dataset type

dataset { measure <
string > _+ }

Dataset having one or
more string Measures

t
1
 * t

2
 * … * t

n
Product of the types
t1 , t2 , … , tn

string * integer * boolean triple of scalar values
made of a string, an
integer and a boolean
value

t
1
 -> t

2
Operator from
t
1
 to t

2

string -> number Operator having input
string and output
number

ruleset { type_constraint } Type_constraint restricts the
ruleset type

hierarchical { geo_area } hierarchical ruleset
defined on geo_area

set < t > Set of elements of type “t” set < dataset > set of datasets

Moreover, the word “name” in the data type description denotes the fact that the argument of the invocation can
contain only the name of an artefact of such a type but not a sub-expression. For example:

comp :: name < component < string > >

Means that the argument passed for the input parameter comp can be only the name of a Component of the basic
scalar type string. The argument passed for comp cannot be a component expression.

The word “name” added as a suffix to the parameter name means the same (for example if the parameter above is
called comp_name).

VTL-ML Operators

Name Symbol Syntax Description

Reference Manual

81

Parentheses () (op) Override the default
evaluation order of the
operators

Persistent assignment <- re <- op Assigns an Expression to
a persistent model
artefact

Non persistent
assignment

:= re := op Assigns an Expression to
a non persistent model
artefact

Membership # ds#comp Identifies a Component
within a Data Set

User defined operator call operator_name ({
argument {, argument }* }
)

Invokes a user defined
operator passing the
arguments

Evaluation of an external
routine

eval eval (
externalRoutineName (
{argument} {, argument }*
), language, returns
outputType)

Evaluates an external
routine

Type conversion cast cast (op, scalarType {,
mask })

converts to the specified
data type

Join inner_join, left_join,
full_join, cross_join

joinOperator (ds { as alias
} { , ds { as alias }}* { using
usingComp } { filter
filterCondition } { apply
applyExpr | calc
calcClause | aggr
aggrClause {
groupingClause } } { keep
comp {, comp }* | drop
comp {, comp }* } {
rename compFrom to
compTo { , compFrom to
compTo }* })
joinOperator::= {
inner_join | left_join|
full_join | cross_join } 1

calcClause ::= { calcRole }
calcComp := calcExpr { , {
calcRole } calcComp :=
calcExpr }*
calcRole :: { identifier |
measure | attribute | viral
attribute} 1

aggrClause ::= { aggrRole
} aggrComp := aggrExpr {
, { aggrRole } aggrComp
:= aggrExpr }*
aggrRole ::= { measure |
attribute | viral attribute } 1

groupingClause ::= {
group by idList | group
except idList | group all
conversionExpr } 1 {
having havingCondition }

Inner join, left outer join,
full outer join, cross join

String concatenation || op1 || op2 Concatenates two strings

Reference Manual

82

Whitespace removal trim, rtrim, ltrim {trim|ltrim|rtrim} 1 (op) Removes trailing or/and
leading whitespace from a
string

Character case
conversion

upper, lower {upper | lower} 1 (op) Converts the character
case of a string in upper
or lower case

Sub-string extraction substr substr (op, start, length) Extracts the substring that
starts in a specified
position and has a
specified length

String pattern
replacement

replace replace (op, pattern1,
pattern2)

Replaces a specified
string-pattern with another
one

String pattern location instr instr(op, pattern, start,
occurrence)

Returns the location of a
specified string-pattern

String length length length (op) Returns the length of a
string

Unary plus + + op Replicates the operand
with the sign unaltered

Unary minus - - op Replicates the operand
with the sign changed

Addition + op1 + op2 Sums two numbers

Subtraction - op1 - op2 Subtracts two numbers

Multiplication * op1 * op2 Multiplies two numbers

Division / op1 / op2 Divides two numbers

Modulo mod mod (op1, op2) Calculates the remainder
of a number divided by a
certain divisor

Rounding round round (op, numDigit) Rounds a number to a
certain digit

Truncation trunc trunc (op, numDigit) Truncates a number to a
certain digit

Ceiling ceil ceil (op) Returns the smallest
integer which is greater or
equal than a number

Floor floor floor (op) Returns the greater
integer which is smaller or
equal than a number

Absolute value abs abs (op) Calculates the absolute
value of a number

Exponential exp exp (op) Raises e (base of the
natural logarithm) to a
number

Natural logarithm ln ln (op) Calculates the natural
logarithm of a number

Power power power (base, exponent) Raises a number to a
certain exponent

Logarithm log log (op, num) Calculates the logarithm
of a number to a certain
base

Reference Manual

83

Square root sqrt sqrt (op) Calculates the square root
of a number

Equal to = left = right Verifies if two values are
equal

Not equal to <> left <> right Verifies if two values are
not equal

Greater than > >= left { > | >= } 1 right Verifies if a first value is
greater (or equal) than a
second value

Less than < <= left { < | <= } 1 right Verifies if a first value is
less (or equal) than a
second value

Between between between(op, from, to) Verify if a value belongs to
a range of values

Element of in op in collection
collection ::= set |
valueDomainName

Verifies if a value belongs
to a set of values

Element of not_in op not_in collection
collection ::= set |
valueDomainName

Verifies if a value does not
belong to a set of values

Match_characters match_characters match_characters (op,
pattern)

Verifies if a value respects
or not a pattern

Isnull isnull isnull (op) Verifies if a value is NULL

Exists in exists_in exists_in (op1, op2,
retain)
retain ::= { true | false | all
}

As for the common
identifiers of op1 and op2,
verifies if the
combinations of values of
op1 exist in op2.

Logical conjunction and op1 and op2 Calculates the logical
AND

Logical disjunction or op1 or op2 Calculates the logical OR

Exclusive disjunction xor op1 xor op2 Calculates the logical
XOR

Logical negation not not op Calculates the logical
NOT

Period indicator period_indicator period_indicator ({op}) Extracts the period
indicator from a
time_period value

Fill time series fill_time_series fill_time_series (op {,
limitsMethod })
limitsMethod ::= single | all

Replaces each missing
data point in the input
Data Set

Flow to stock flow_to_stock flow_to_stock (op) Transforms from a flow
interpretation of a Data
Set to stock

Stock to flow stock_to_flow stock_to_flow (op) Transforms from stock to
flow interpretation of a
Data Set

Time shift timeshift timeshift (op, shiftNumber
)

Shifts the time component
of a specified range of
time

Reference Manual

84

Time aggregation time_agg time_agg (periodIndTo {,
periodIndFrom } {,op }{,
first | last })

Converts the time values
from higher to lower
frequency values

Actual time current_date current_date () Returns the current date

Union union union (dsList)
dsList ::= ds {, ds }*

Computes the union of N
datasets

Intersection intersect intersect (dsList)
dsList ::= ds {, ds }*

Computes the intersection
of N datasets

Set difference setdiff setdiff (ds1, ds2) Computes the differences
of two datasets

Symmetric difference symdiff symdiff (ds1, ds2) Computes the symmetric
difference of two datasets

Hierarchical roll-up hierarchy hierarchy (op, hr {
condition condComp {,
condComp }* } { rule
ruleComp } { mode } {
input } { output })
condComp ::= component
{, component }*
mode ::= non_null |
non_zero | partial_null |
partial_zero | always_null
| always_zero
input ::= dataset | rule |
rule_priority
output ::= computed | all

Aggregates data using a
hierarchical ruleset

Aggregate invocation in a Data Set expression:
aggregateOperator (
firstOperand {,
additionalOperand }* {
groupingClause })
in a Component
expression within an aggr
clause:
aggregateOperator (
firstOperand {,
additionalOperand }*) {
groupingClause }
aggregateOperator ::=
avg | count | max | median
| min | stddev_pop|
stddev_samp | sum |
var_pop | var_samp
groupingClause ::= {
group by groupingId {,
groupingId}* | group
except groupingId {,
groupingId}* | group all
conversionExpr } 1 {
having havingCondition }

Set of statistical functions
used to aggregate data

Reference Manual

85

Analytic invocation analyticOperator (
firstOperand {,
additionalOperand }* over
(analyticClause))
analyticOperator ::= avg |
count | max | median | min
| stddev_pop|
stddev_samp | sum |
var_pop | var_samp |
first_value | lag |
last_value | lead | rank |
ratio_to_report
analyticClause ::= {
partitionClause } {
orderClause } {
windowClause }
partitionClause ::=
partition by identifier {,
identifier }*
orderClause ::= order by
component { asc | desc }
{, component { asc | desc
} }*
windowClause ::= { data
points | range } 1 between
limitClause and
limitClause
limitClause ::= { num
preceding | num following
| current data point |
unbounded preceding |
unbounded following } 1

Set of statistical functions
used to aggregate data

Check datapoint check_datapoint check_datapoint (op, dpr
{ components listComp } {
output output })
listComp ::= comp {, comp
}*
output ::= invalid | all |
all_measures

Applies one datapoint
ruleset on a Data Set

Check hierarchy check_hierarchy check_hierarchy (op, hr {
condition condComp {,
condComp }* } { rule
ruleComp } { mode } {
input } { output })
mode ::= non_null |
non_zero | partial_null |
partial_zero | always_null
| always_zero
input ::= dataset |
dataset_priority
output ::= invalid | all |
all_measures

Applies a hierarchical
ruleset to a Data Set

Check check check (op { errorcode
errorcode } { errorlevel
errorlevel } { imbalance
imbalance } { output })
output ::= invalid | all

Checks if an expression
verifies a condition

Reference Manual

86

If then else if… then… else… if condition then
thenOperand else
elseOperand

Makes alternative
calculations according to
a condition

Nvl nvl nvl (op1, op2) Replaces the null value
with a value.

Filtering Data Points filter op [filter condition] Filter data using a
Boolean condition

Calculation of a
Component

calc op [calc { calcRole }
calcComp := calcExpr {, {
calcRole } calcComp :=
calcExpr }*]

Calculates the values of a
Structure Component

Aggregation aggr op [aggr aggrClause {
groupingClause }]
aggrClause ::= { aggrRole
} aggrComp := aggrExpr {,
{ aggrRole } aggrComp:=
aggrExpr }*
groupingClause ::= {
group by groupingId {,
groupingId }* | group
except groupingId {,
groupingId }* | group all
conversionExpr } 1 {
having havingCondition }
aggrRole::= measure |
attribute | viral attribute

Aggregates using an
aggregate operator

Maintaining Components keep op [keep comp {, comp }*
]

Keep list of components

Removal of Components drop op [drop comp {, comp }*] Drop list of components

Change of Component
name

rename op [rename comp_from to
comp_to {,comp_from to
comp_to }*]

Rename components

Pivoting pivot op [pivot identifier,
measure]

Transform identifier
values to measures

Unpivoting unpivot op [unpivot identifier,
measure]

Transform measures to
identifier values

Subspace sub op [sub identifier = value
{, identifier = value }*]

Remove the specified
identifiers by fixing a value
for them

VTL-ML - Evaluation order of the Operators

Within a single expression of the manipulation language, the operators are applied in sequence, according to the
precedence order. Operators with the same precedence level are applied according to the default associativity rule.
Precedence and associativity orders are reported in the following table.

Evaluation order Operator Description
Default as sociativity

rule

I () Parentheses. To alter the default
order.

None

II VTL operators with
functional syntax

VTL operators with functional syntax Left-to-right

III Clause
Membership

Clause
Membership

Left-to-right

Reference Manual

87

IV unary plus
unary minus
not

Unary minus
Unary plus
Logical negation

None

V *
/

Multiplication
Division

Left-to-right

VI +
-
||

Addition
Subtraction
String concatenation

Left-to-right

VII > >=
< <=
=
<>
in
not_in

Greater than
Less than
Equal-to
Not-equal-to
In a value list
Not in a value list

Left-to-right

VIII and Logical AND Left-to-right

IX or
xor

Logical OR
Logical XOR

Left-to-right

X if-then-else
case

Conditional (if-then-else/case) None

Description of VTL Operators

The structure used for the description of the VTL-DL Operators is made of the following parts:

• Operator name, which is also used to invoke the operator

• Semantics: a brief description of the purpose of the operator

• Syntax: the syntax of the Operator (this part follows the conventions described in the previous section
“Conventions for describing the operators’ syntax”)

• Syntax description: detailed explanation of the meaning of the various parts of the syntax

• Parameters: list of the input parameters and their types

• Constraints: additional constraints that are not specified with the meta-syntax and need a textual explanation

• Semantic specifications: detailed description of the semantics of the operator

• Examples: examples of invocation of the operator

The structure used for the description of the VTL-ML Operators is made of the following parts:

• Operator name, followed by the operator symbol (keyword) which is used to invoke the operator

• Syntax: the syntax of the Operator (this part follows the conventions described in the previous section
“Conventions for describing the operators’ syntax”)

• Input parameters: list of all input parameters and the subexpressions with their meaning and the indication if
they are mandatory or optional

• Examples of valid syntaxes: examples of syntactically valid invocations of the Operator

• Semantics for scalar operations: the behaviour of the Operator on scalar operands, which is the basic
behaviour of the Operator

• Input parameters type: the formal description of the type of the input parameters (this part follows the
conventions described in the previous section “Description of the data types of operands and results”)

• Result type: the formal description of the type of the result (this part follows the conventions described in the
previous section “Description of the data types of operands and results”)

• Additional constraints: additional constraints that are not specified with the meta-syntax and need a textual
explanation, including both possible semantic constraints under which the operation is possible or impossible,
and syntactical constraint for the invocation of the Operator

Reference Manual

88

• Behaviour: description of the behaviour of the Operator for non-scalar operations (for example operations at
Data Set or at Component level). When the Operator belongs to a class of Operators having a common
behaviour, the common behaviour is described once for all in a section of the chapter “Typical behaviours of the
ML Operators” and therefore this part describes only the specific aspect of the behaviour and contains a
reference to the section where the common part of the behaviour is described.

• Examples: a series of examples of invocation and application of the operator in case of operations at Data Sets
or at Component level.

VTL-DL - Rulesets

define datapoint ruleset

Semantics

The Data Point Ruleset contains Rules to be applied to each individual Data Point of a Data Set for validation
purposes. These rulesets are also called “horizontal” taking into account the tabular representation of a Data Set
(considered as a mathematical function), in which each (vertical) column represents a variable and each (horizontal)
row represents a Data Point: these rulesets are applied on individual Data Points (rows), i.e., horizontally on the
tabular representation.

Syntax

define datapoint ruleset rulesetName (dpRulesetSignature) is dpRule { ; dpRule }* end datapoint ruleset

dpRulesetSignature ::= valuedomain listValueDomains | variable listVariables

listValueDomains ::= valueDomain { as vdAlias } { , valueDomain { as vdAlias } }*

listVariables ::= variable { as varAlias } { , variable { as varAlias } }*

dpRule ::= { ruleName : } { when antecedentCondition then } consequentCondition | { errorcode errorCode } | {
errorlevel errorLevel }

Syntax description

rulesetName the name of the Data Point Ruleset to be defined.

dpRulesetSignature the Cartesian space of the Ruleset (signature of the
Ruleset), which specifies either the Value Domains or
the Represented Variables (see the information model)
on which the Ruleset is defined. If valuedomain is
specified then the Ruleset is applicable to the Data
Sets having Components that take values on the
specified Value Domains. If variable is specified then
the Ruleset is applicable to Data Sets having the
specified Variables as Components.

valueDomain a Value Domain on which the Ruleset is defined.

vdAlias an (optional) alias assigned to a Value Domain and
valid only within the Ruleset, this can be used for the
sake of compactness in writing the Rules. If an alias is
not specified then the name of the Value Domain
(parameter valueDomain) is used in the body of the
rules.

variable a Represented Variable on which the Ruleset is
defined.

Reference Manual

89

varAlias an (optional) alias assigned to a Variable and valid only
within the Ruleset, this can be used for the sake of
compactness in writing the Rules. If an alias is not
specified then the name of the Variable (parameter
valueDomain) is used in the body of the Rules.

dpRule a Data Point Rule, as defined in the following
parameters.

ruleName the name assigned to the specific Rule within the
Ruleset. If the Ruleset is used for validation then the
ruleName identifies the validation results of the various
Rules of the Ruleset. The ruleName is optional and, if
not specified, is assumed to be the progressive order
number of the Rule in the Ruleset. However please
note that, if ruleName is omitted, then the Rule names
can change in case the Ruleset is modified, e.g., if new
Rules are added or existing Rules are deleted, and
therefore the users that interpret the validation results
must be aware of these changes.

antecedentCondition a boolean expression to be evaluated for each single
Data Point of the input Data Set. It can contain Values
of the Value Domains or Variables specified in the
Ruleset signature and constants; all the VTL-ML
component level operators are allowed. If omitted then
antecedentCondition is assumed to be TRUE.

consequentCondition a boolean expression to be evaluated for each single
Data Point of the input Data Set when the
antecedentCondition evaluates to TRUE (as
mentioned, missing antecedent conditions are
assumed to be TRUE). It contains Values of the Value
Domains or Variables specified in the Ruleset signature
and constants; all the VTL-ML component level
operators are allowed. A consequent condition equal to
FALSE is considered as a non-valid result.

errorCode a literal denoting the error code associated to the rule,
to be assigned to the possible non-valid results in case
the Rule is used for validation. If omitted then no error
code is assigned (NULL value). VTL assumes that a
Value Domain errorcode_vd of error codes exists in the
Information Model and contains all possible error
codes: the errorCode literal must be one of the possible
Values of such a Value Domain. VTL assumes also that
a Variable errorcode for describing the error codes
exists in the IM and is a dependent variable of the Data
Sets which contain the results of the validation.

errorLevel a literal denoting the error level (severity) associated to
the rule, to be assigned to the possible non-valid results
in case the Rule is used for validation. If omitted then
no error level is assigned (NULL value). VTL assumes
that a Value Domain errorlevel_vd of error levels exists
in the Information Model and contains all possible error
levels: the errorLevel literal must be one of the possible
Values of such a Value Domain. VTL assumes also that
a Variable errorlevel for describing the error levels
exists in the IM and is a dependent variable of the Data
Sets which contain the results of the validation.

Reference Manual

90

Parameters

rulesetName:

name <ruleset >

valueDomain:

name < valuedomain >

vdAlias:

name

variable:

name

varAlias:

name

ruleName:

name

antecedentCondition:

boolean

consequentCondition:

boolean

errorCode:

errorcode_vd

errorLevel:

errorlevel_vd

Constraints

• antecedentCondition and consequentCondition can refer only to the Value Domains or Variables specified in
the dpRulesetSignature.

• Either ruleName is specified for all the Rules of the Ruleset or for none.

• If specified, then ruleName must be unique within the Ruleset.

Semantic specification

This operator defines a persistent Data Point Ruleset named rulesetName that can be used for validation purposes.

A Data Point Ruleset is a persistent object that contains Rules to be applied to the Data Points of a Data Set 43. The
Data Point Rulesets can be invoked by the check_datapoint operator. The Rules are aimed at checking the
combinations of values of the Data Set Components, assessing if these values fulfil the logical conditions expressed
by the Rules themselves. The Rules are evaluated independently for each Data Point, returning a Boolean scalar
value (i.e., TRUE for valid results and FALSE for non-valid results).

Each Rule contains an (optional) antecedentCondition boolean expression followed by a consequentCondition
boolean expression and expresses a logical implication. Each Rule states that when the antecedentCondition
evaluates to TRUE for a given Data Point, then the consequentCondition is expected to be TRUE as well. If this
implication is fulfilled, the result is considered as valid (TRUE), otherwise as non-valid (FALSE). On the other side, if
the antecedentCondition evaluates to FALSE, the consequentCondition does not applies and is not evaluated at all,
and the result is considered as valid (TRUE). In case the antecedentCondition is absent then it is assumed to be
always TRUE, therefore the consequentCondition is expected to evaluate to TRUE for all the Data Points. See an
example below:

Reference Manual

91

Rule Meaning

On Value Domains:
when flow_type = “CREDIT” or flow_type = “DEBIT” then
numeric_value >= 0

When the Component of the Data Set which is
defined on the Value Domain named flow_type
takes the value “CREDIT” or the value “DEBIT”,
then the other Component defined on the Value
Domain named numeric_value is expected to have
a zero or positive value.

On Variables:
when flow = “CREDIT” or flow = “DEBIT” then obs_value
>= 0

When the Component of the Data Set named flow
has the value “CREDIT” or “DEBIT” then the
Component named obs_value is expected to have
a value greater than zero.

The definition of a Ruleset comprises a signature (dpRulesetSignature), which specifies the Value Domains or
Variables on which the Ruleset is defined and a set of Rules, that are the Boolean expressions to be applied to each
Data Point. The antecedentCondition and consequentCondition of the Rules can refer only to the Value Domains or
Variables of the Ruleset signature.

The Value Domains or the Variables of the Ruleset signature identify the space in which the rules are defined while
each Rule provides for a criterion that demarcates the Set of valid combinations of Values inside this space.

The Data Point Rulesets can be defined in terms of Value Domains in order to maximize their reusability, in fact this
way a Ruleset can be applied on any Data Set which has Components which take values on the Value Domains of
the Ruleset signature. The association between the Components of the Data Set and the Value Domains of the
Ruleset signature is provided by the check_datapoint operator at the invocation of the Ruleset.

When the Ruleset is defined on Variables, their reusability is intentionally limited to the Data Sets which contains
such Variables (and not to other possible Variables which take values from the same Value Domain). If at a later
stage the Ruleset would need to be applied also to other Variables defined on the same Value Domain, a similar
Ruleset should be defined also for the other Variable.

Rules are uniquely identified by ruleName. If omitted then ruleName is implicitly assumed to be the progressive order
number of the Rule in the Ruleset. Please note however that, using this default mechanism, the Rule Name can
change if the Ruleset is modified, e.g., if new Rules are added or existing Rules are deleted, and therefore the users
that interpret the validation results must be aware of these changes. In addition, if the results of more than one
Ruleset have to be combined in one Data Set, then the user should make the relevant rulesetNames different.

As said, each Rule is applied in a row-wise fashion to each individual Data Point of a Data Set. The references to the
Value Domains defined in the antecedentCondition and consequentCondition are replaced with the values of the
respective Components of the Data Point under evaluation.

Examples

define datapoint ruleset DPR_1 (valuedomain flow_type A, numeric_value B) is
 when A = “CREDIT” or A = “DEBIT” then B >= 0 errorcode “Bad value” errorlevel 10
end datapoint ruleset;

define datapoint ruleset DPR_2 (variable flow F, obs_value O) is
 when F = “CREDIT” or F = “DEBIT” then O >= 0 errorcode “Bad value”
 end datapoint ruleset;

43 In order to apply the Ruleset to more Data Sets, these Data Sets must be composed together
using the appropriate VTL operators in order to obtain a single Data Set.

Reference Manual

92

define hierarchical ruleset

Semantics

This operator defines a persistent Hierarchical Ruleset that contains Rules to be applied to individual Components of
a given Data Set in order to make validations or calculations according to hierarchical relationships between the
relevant Code Items. These Rulesets are also called “vertical” taking into account the tabular representation of a
Data Set (considered as a mathematical function), in which each (vertical) column represents a variable and each
(horizontal) row represents a Data Point: these Rulesets are applied on variables (columns), i.e., vertically on the
tabular representation of a Data Set.

A main purpose of the hierarchical Rules is to express some more aggregated Code Items (e.g. the continents) in
terms of less aggregated ones (e.g., their countries) by using Code Item Relationships. This kind of relations can be
applied to aggregate data, for example to calculate an additive measure (e.g., the population) for the aggregated
Code Items (e.g., the continents) as the sum of the corresponding measures of the less aggregated ones (e.g., their
countries). These rules can be used also for validation, for example to check if the additive measures relevant to the
aggregated Code Items (e.g., the continents) match the sum of the corresponding measures of their component
Code Items (e.g., their countries), provided that the input Data Set contains all of them, i.e. the more and the less
aggregated Code Items.

Another purpose of these Rules is to express the relationships in which a Code Item represents some part of another
one, (e.g., “Africa” and “Five largest countries of Africa”, being the latter a detail of the former). This kind of
relationships can be used only for validation, for example to check if a positive and additive measure (e.g., the
population) relevant to the more aggregated Code Item (e.g., Africa) is greater than the corresponding measure of
the other more detailed one (e.g., “5 largest countries of Africa”).

The name “hierarchical” comes from the fact that this kind of Ruleset is able to express the hierarchical relationships
between Code Items at different levels of detail, in which each (aggregated) Code Item is expressed as a partition of
(disaggregated) ones. These relationships can be recursive, i.e., the aggregated Code Items can be in their turn
component of even more aggregated ones, without limitations about the number of recursions.

As a first simple example, the following Hierarchical Ruleset named “BeneluxCountriesHierarchy” contains a single
rule that asserts that, in the Value Domain “Geo_Area”, the Code Item BENELUX is the aggregation of the Code
Items BELGIUM, LUXEMBOURG and NETHERLANDS:

define hierarchical ruleset BeneluxCountriesHierarchy (valuedomain rule Geo_Area) is
 BENELUX = BELGIUM + LUXEMBOURG + NETHERLANDS
end hierarchical ruleset

Syntax

define hierarchical ruleset rulesetName (hrRulesetSignature) is

hrRule

{ ; hrRule }*

end hierarchical ruleset

hrRulesetSignature ::= vdRulesetSignature | varRulesetSignature

vdRulesetSignature ::= valuedomain { condition vdConditioningSignature } rule ruleValueDomain

vdConditioningSignature ::= condValueDomain { as vdAlias } { , condValueDomain { as vdAlias } }*

varRulesetSignature ::= variable { condition varConditioningSignature} rule ruleVariable

varConditioningSignature ::= condVariable { as vdAlias } { , condVariable { as vdAlias } }*

hrRule ::= { ruleName :} codeItemRelation { errorcode errorCode } { errorlevel errorLevel }

codeItemRelation ::= { when leftCondition then }

leftCodeItem { = | > | < | >= | <=}:sup:1
{ + | - } rightCodeItem { [rightCondition] }
{ { + | - }1 rightCodeItem { [rightCondition] } }*

Reference Manual

93

Syntax description

rulesetName the name of the Hierarchical Ruleset to be defined.

hrRulesetSignature the signature of the Ruleset. It specifies the Value
Domain or Variable on which the Ruleset is defined,
and the Conditioning Signature.

vdRulesetSignature the signature of a Ruleset defined on Value Domains

varRulesetSignature the signature of a Ruleset defined on Variables

hrRule a single hierarchical rule, as described below.

vdConditioningSignature specifies the Value Domains on which the conditions
are defined. The Ruleset is meant to be applicable to
the Data Sets having Components that take values on
the Value Domain on which the ruleset is defined (i.e.,
ruleValueDomain) and on the conditioning Value
Domains (i.e., condValueDomain).

ruleValueDomain the Value Domain on which the Ruleset is defined

condValueDomain a conditioning Value Domain of the Ruleset

vdAlias an (optional) alias assigned to a Value Domain and
valid only within the Ruleset, this can be used for the
sake of compactness in writing leftCondition and
rightCondition. If an alias is not specified then the name
of the Value Domain (i.e., condValueDomain) must be
used.

varConditioningSignature the signature of the (possible) conditions of the Ruleset
defined on Variables. It specifies the Represented
Variables (see the information model) on which these
conditions are defined. The Ruleset is meant to be
applicable to any Data Set having Components which
are defined by the Variable on which the Ruleset is
expressed (i.e., variable) and on the Conditioning
Variables.

ruleVariable the variable on which the Ruleset is defined

condVariable a conditioning Variable of the Ruleset

varAlias an (optional) alias assigned to a Variable and valid only
within the Ruleset, this can be used for the sake of
compactness in writing leftCondition and rightCondition.
If an alias is not specified then the name of the
Variableomain (parameter condVariable) must be used.

ruleName the name assigned to the specific Rule within the
Ruleset. If the Ruleset is used for validation then the
ruleName identifies the validation results of the various
Rules of the Ruleset. The ruleName is optional and, if
not specified, is assumed to be the progressive order
number of the Rule in the Ruleset. However please
note that, if ruleName is omitted, then the Rule names
can change in case the Ruleset is modified, e.g., if new
Rules are added or existing Rules are deleted, and
therefore the users that interpret the validation results
must be aware of these changes. In addition, if the
results of more than one Ruleset have to be combined
in one Data Set, then the user should make the
relevant rulesetNames different.

Reference Manual

94

codeItemRelation specifies a (possibly conditioned) Code Item Relation. It
expresses a logical relation between Code Items
belonging to the Value Domain of the
hrRulesetSignature, possibly conditioned by the Values
of the Value Domains or Variables of the Conditioning
Signature. The relation is expressed by one of the
symbols =, >, >=, <, <=, that in this context denote
special logical relationships typical of Code Items. The
first member of the relation is a single Code Item. The
second member of the relationship is the composition
of one or more Code Items combined using the
symbols + or -, which in turn also denote special logical
operators typical of Code Items. The meaning of these
symbols is better explained below and in the User
Manual.

errorCode a literal denoting the error code associated to the rule,
to be assigned to the possible non-valid results in case
the Rule is used for validation. If omitted then no error
code is assigned (NULL value). VTL assumes that a
Value Domain errorcode_vd of the error codes exists in
the Information Model and contains all the possible
error codes: the errorCode literal must be one of the
possible Values of such a Value Domain. VTL assumes
also that a Variable errorcode for describing the error
codes exists in the IM and is a dependent variable of
the Data Sets which contain the results of the
validation.

errorLevel a literal denoting the error level (severity) associated to
the rule, to be assigned to the possible non-valid results
in case the Rule is used for validation. If omitted then
no error level is assigned (NULL value). VTL assumes
that a Value Domain errorlevel_vd of the error levels
exists in the Information Model and contains all the
possible error levels: the errorLevel literal must be one
of the possible Values of such a Value Domain. VTL
assumes also that a Variable errorlevel for describing
the error levels exists in the IM and is a dependent
variable of the Data Sets which contain the results of
the validation.

leftCondition a boolean expression which defines the pre-condition
for evaluating the left member Code Item (i.e., it is
evaluated only when the leftCondition is TRUE); It can
contain references to the Value domains or the
Variables of the conditioningSignature of the Ruleset
and Constants; all the VTL-ML component level
operators are allowed. The leftCondition is optional, if
missing it is assumed to be TRUE and the Rule is
always evaluated.

leftCodeItem a Code Item of the Value Domain specified in the
hrRulesetSignature.

rightCodeItem a Code Item of the Value Domain specified in the
hrRulesetSignature.

Reference Manual

95

rightCondition a boolean scalar expression which defines the
condition for a right member Code Item to contribute to
the evaluation of the Rule (i.e., the right member Code
Item is taken into account only when the relevant
rightCondition is TRUE). It can contain references to
the Value Domains or Variables of the
vdConditioningSignature or varConditioningSignature
of the Ruleset and Constants; all the VTL-ML
component level operators are allowed. The
rightCondition is optional, if omitted then it is assumed
to be TRUE and the right member Code Item is always
taken into account.

Input parameters type

rulesetName

name < ruleset >

ruleValueDomain

name <valuedomain >

condValueDomain

name <valuedomain >

vdAlias

name

ruleVariable

name

condVariable

name

varAlias

name

ruleName

name

errorCode

errorcode_vd

errorLevel

errorlevel_vd

leftCondition

boolean

leftCodeItem

name

rightCodeItem

name

rightCondition

boolean

Reference Manual

96

Constraints

• leftCondition and rightCondition can refer only to Value Domains or Variables specified in
vdConditioningSignature or varConditioningSignature.

• Either the ruleName is specified for all the Rules of the Ruleset or for none.

• If specified, the ruleName must be unique within the Ruleset.

Semantic specification

This operator defines a Hierarchical Ruleset named rulesetName that can be used both for validation and calculation
purposes (see check_hierarchy and hierarchy). A Hierarchical Ruleset is a set of Rules expressing logical
relationships between the Values (Code Items) of a Value Domain or a Represented Variable.

Each rule contains a Code Item Relation, possibly conditioned, which expresses the relation between Code Items
to be enforced. In the relation, the left member Code Item is put in relation to a combination of one or more right
member Code Items. The kinds of relations are described below.

The left member Code Item can be optionally conditioned through a leftCondition, a boolean expression which
defines the cases in which the Rule has to be applied (if not declared the Rule is applied ever). The participation of
each right member Code Item in the Relation can be optionally conditioned through a rightCondition, a boolean
expression which defines the cases in which the Code Item participates in the relation (if not declared the Code Item
participates to the relation ever).

As for the mathematical meaning of the relation, please note that each Value (Code Item) is the representation of an
event belonging to a space of events (i.e., the relevant Value Domain), according to the notions of “event” and
“space of events” of the probability theory (see also the section on the Generic Models for Variables and Value
Domains in the VTL IM). Therefore the relations between Values (Code Items) express logical implications between
events.

The envisaged types of relations are: “coincides” (=), “implies” (<), “implies or coincides” (<=), “is implied by” (>), “is
implied by or coincides” (>=) 44. For example:

UnitedKingdom < Europe

means that UnitedKingdom implies Europe (if a point belongs to United Kingdom it also belongs to Europe).

January2000 < year2000

means that January of the year 2000 implies the year 2000 (if a time instant belongs to “January 2000” it also
belongs to the “year 2000”)

The first member of a Relation is a single Code Item. The second member can be either a single Code Item, like in
the example above, or a logical composition of Code Items giving another Code Item as result. The logical
composition can be defined by means of Code Item Operators, whose goal is to compose some Code Items in order
to obtain another Code Item.

Please note that the symbols + and - do not denote the usual operations of sum and subtraction, but logical
operations between Code Items which are seen as events of the probability theory. In other words, two or more Code
Items cannot be summed or subtracted to obtain another Code Item, because they are events and not numbers,
however they can be manipulated through logical operations like “OR” and “Complement”.

Note also that the + also acts as a declaration that all the Code Items denoted by + in the formula are mutually
exclusive one another (i.e., the corresponding events cannot happen at the same time), as well as the - acts as a
declaration that all the Code Items denoted by - in the formula are mutually exclusive one another and furthermore
that each one of them is a part of (implies) the result of the composition of all the Code Items having the + sign.

At intuitive level, the symbol + means “with” (Benelux = Belgium with Luxembourg with Netherland) while the symbol
- means “without” (EUwithoutUK = EuropeanUnion without UnitedKingdom).

When these relationships are applied to additive numeric measures (e.g., the population relevant to geographical
areas), they allow to obtain the measure values of the compound Code Items (i.e., the population of Benelux and
EUwithoutUK) by summing or subtracting the measure values relevant to the component Code Items (i.e., the
population of Belgium, Luxembourg and Netherland). This is why these logical operations are denoted in VTL
through the same symbols as the usual sum and subtraction. Please note also that this property is valid whichever is
the Data Set and whichever is the additive measure (provided that the possible other Identifier Components of the
Data Set Structure have the same values), therefore the Rulesets of this kind are potentially largely reusable.

Reference Manual

97

The Ruleset Signature specifies the space on which the Ruleset is defined, i.e., the ValueDomain or Variable on
which the Code Item Relations are defined (the Ruleset is meant to be applicable to Data Sets having a Component
which takes values on such a Value Domain or are defined by such a Variable). The optional
vdConditioningSignature specifies the conditioning Value Domains (the conditions can refer only to those Value
Domains), as well as the optional varConditioningSignature specifies the conditioning Variables (the conditions can
refer only to those Variables).

The Hierarchical Ruleset may act on one or more Measures of the input Data Set provided that these measures are
additive (for example it cannot be applied on a measure containing a “mean” because it is not additive).

Within the Hierarchical Rulesets there can be dependencies between Rules, because the inputs of some Rules can
be the output of other Rules, so the former can be evaluated only after the latter. For example, the data relevant to
the Continents can be calculated only after the calculation of the data relevant to the Countries. As a consequence,
the order of calculation of the Rules is determined by their mutual dependencies and can be different from the order
in which the Rules are written in the Ruleset. The dependencies between the Rules form a directed acyclic graph.

The Hierarchical ruleset can be used for calculations to calculate the upper levels of the hierarchy if the data
relevant to the leaves (or some other intermediate level) are available in the operand Data Set of the hierarchy
operator (for more information see also the “Hierarchy” operator). For example, having additive Measures broken by
region, it would be possible to calculate these Measures broken by countries, continents and the world. Besides,
having additive Measures broken by country, it would be possible to calculate the same Measures broken by
continents and the world.

When a Hierarchical Ruleset is used for calculation, only the Relations expressing coincidence (=) are evaluated
(provided that the leftCondition is TRUE, and taking into account only right-side Code Items whose rightCondition is
TRUE). The result Data Set will contain the compound Code Items (the left members of those relations) calculated
from the component Code Items (the right member of those Relations), which are taken from the input Data Set (for
more details about the evaluation options see the hierarchy operator). Moreover, the clauses typical of the validation
are ignored (e.g., ErrorCode, ErrorLevel).

The Hierarchical Ruleset can be also used to filter the input Data Points. In fact if some Code Items are defined equal
to themselves, the relevant Data Points are brought in the result unchanged. For example, the following Ruleset will
maintain in the result the Data Points of the input Data Set relevant to Belgium, Luxembourg and Netherland and will
add new Data Points containing the calculated value for Benelux:

define hierarchical ruleset BeneluxRuleset (valuedomain rule GeoArea) is

 Belgium = Belgium

 ; Luxembourg = Luxembourg

 ; Netherlands = Netherlands

 ; Benelux = Belgium + Luxembourg + Netherlands

end hierarchical ruleset

The Hierarchical Rulesets can be used for validation in case various levels of detail are contained in the Data Set
to be validated (see also the check_hierarchy operator for more details). The Hierarchical Rulesets express the
coherency Rules between the different levels of detail. Because in the validation the various Rules can be evaluated
independently, their order is not significant.

If a Hierarchical Ruleset is used for validation, all the possible Relations (=, >, >=, <, <=) are evaluated (provided that
the leftCondition is TRUE and taking into account only right-side Code Items whose rightCondition is TRUE). The
Rules are evaluated independently. Both the Code Items of the left and right members of the Relations are expected
to belong to and taken from the input Data Set (for more details about the evaluation options see the
check_hierarchy operator). The Antecedent Condition is evaluated and, if TRUE, the operations specified in the
right member of the Relation are performed and the result is compared to the first member, according to the specified
type of Relation. The possible relations in which Code Items are defined as equal to themselves are ignored. Further
details are described in the check_hierarchy operator.

If the data to be validated are in different Data Sets, either they can be joined in advance using the proper VTL
operators or the validation can be done by comparing those Data Sets directly, without using a Hierarchical Ruleset
(see also the check operator).

Reference Manual

98

Through the right and left Conditions, the Hierarchical Rulesets allow to declare the time validity of Rules
and Relations. In fact leftCondition and RightCondition can be defined in term of the time Value Domain, expressing
respectively when the left member Code Item has to be evaluated (i.e., when it is considered valid) and when a right
member Code Item participates in the relation.

The following two simplified examples show possible ways of defining the European Union in term of participating
Countries.

Example 1 (for simplicity the time literals are written without the needed “cast” operation)

define hierarchical ruleset EuropeanUnionAreaCountries1
 (valuedomain condition ReferenceTime as Time rule GeoArea) is

 when between (Time, “1.1.1958”, “31.12.1972”)
 then EU = BE + FR + DE + IT + LU + NL

 ; when between (Time, “1.1.1973”, “31.12.1980”)
 then EU = *… same as above …* + DK + IE + GB

 ; when between (Time, “1.1.1981”, “02.10.1985”)
 then EU = *… same as above …* + GR

 ; when between (Time, “1.1.1986”, “31.12.1994”)
 then EU = *… same as above …* + ES + PT

 ; when between (Time, “1.1.1995”, “30.04.2004”)
 then EU = *… same as above …* + AT + FI + SE

 ; when between (Time, “1.5.2004”, “31.12.2006”)
 then EU = *… same as above …* +CY+CZ+EE+HU+LT+LV+MT+PL+SI+SK

 ; when between (Time, “1.1.2007”, “30.06.2013”)
 then EU = *… same as above …* + BG + RO

 ; when >= “1.7.2013”
 then EU = *… same as above …* + HR

end hierarchical ruleset

Example 2 (for simplicity the time literals are written without the needed “cast” operation)

define hierarchical ruleset EuropeanUnionAreaCountries2
 (valuedomain condition ReferenceTime as Time rule GeoArea) is

EU = AT [Time >= “0101.1995”]
 + BE [Time >= “01.01.1958”]
 + BG [Time >= “01.01.2007”]
 + …
 + SE [Time >= “01.01.1995”]
 + SI [Time >= “01.05.2004”]
 + SK [Time >= “01.05.2004”]

end hierarchical ruleset

The Hierarchical Rulesets allow defining hierarchies either having or not having levels (free hierarchies). For
example, leaving aside the time validity for sake of simplicity:

define hierarchical ruleset GeoHierarchy (valuedomain rule Geo_Area) is

 World = Africa + America + Asia + Europe + Oceania

 ; Africa = Algeria + … + Zimbabwe

Reference Manual

99

 ; America = Argentina + … + Venezuela

 ; Asia = Afghanistan + … + Yemen

 ; Europe = Albania + … + VaticanCity

 ; Oceania = Australia + … + Vanuatu

 ; Afghanistan = AF_reg_01 + … + AF_reg_N

 … … … … … …

 ; Zimbabwe = ZW_reg_01 + … + ZW_reg_M

 ; EuropeanUnion = … + … + … + …

 ; CentralAmericaCommonMarket = … + … + … + …

 ; OECD_Area = … + … + … + …

end hierarchical ruleset

The Hierarchical Rulesets allow defining multiple relations for the same Code Item.

Multiple relations are often useful for validation. For example, the Balance of Payments item “Transport” can be
broken down both by type of carrier (Air transport, Sea transport, Land transport) and by type of objects transported
(Passengers and Freights) and both breakdowns must sum up to the whole “Transport” figure. In the following
example a RuleName is assigned to the different methods of breaking down the Transport.

define hierarchical ruleset TransportBreakdown (variable rule BoPItem) is

 transport_method1 : Transport = AirTransport + SeaTransport +
 LandTransport

 ; transport_method2 : Transport = PassengersTransport +
 FreightsTransport

end hierarchical ruleset

Multiple relations can be useful even for calculation. For example, imagine that the input Data Set contains data
about resident units broken down by region and data about non-residents units broken down by country. In order to
calculate a homogeneous level of aggregation (e.g., by country), a possible Ruleset is the following:

define hierarchical ruleset CalcCountryLevel (valuedomain condition
 Residence rule GeoArea) is

 when Residence = “resident” then Country1 = Country1

 ; when Residence = “non-resident” then Country1 = Region11+ … +Region1M
 …

 ; when Residence = “resident” then CountryN = CountryN

 ; when Residence = “non-resident” then CountryN = Region N1+ …+ RegionNM

end hierarchical ruleset

In the calculation, basically, for each Rule, for all the input Data Points and provided that the conditions are TRUE,
the right Code Items are changed into the corresponding left Code Item, obtaining Data Points referred only to the
left Code Items. Then the outcomes of all the Rules of the Ruleset are aggregated together to obtain the Data Points
of the result Data Set.

Reference Manual

100

As far as each left Code Item is calculated by means of a single Rule (i.e., a single calculation method), this process
cannot generate inconsistencies.

Instead if a left Code Item is calculated by means of more Rules (e.g., through more than one calculation method),
there is the risk of producing erroneous results (e.g., duplicated data), because the outcome of the multiple Rules
producing the same Code Item are aggregated together. Proper definition of the left or right conditions can avoid this
risk, ensuring that for each input Data Point just one Rule is applied.

If the Ruleset is aimed only at validation, there is no risk of producing erroneous results because in the validation the
rules are applied independently.

Examples

1) The Hierarchical Ruleset is defined on the Value Domain “sex”: Total is defined as Male + Female. No conditions
are defined.

::

define hierarchical ruleset sex_hr (valuedomain rule sex) is

TOTAL = MALE + FEMALE

end hierarchical ruleset

2) BENELUX is the aggregation of the Code Items BELGIUM, LUXEMBOURG and NETHERLANDS. No conditions
are defined.

define hierarchical ruleset BeneluxCountriesHierarchy (valuedomain rule GeoArea) is

 BENELUX = BELGIUM + LUXEMBOURG + NETHERLANDS errorcode “Bad value for
 Benelux”

end hierarchical ruleset

3) American economic partners. The first rule states that the value for North America should be greater than the
value reported for US. This type of validation is useful when the data communicated by the data provider do not
cover the whole composition of the aggregate but only some elements. No conditions are defined.

define hierarchical ruleset american_partners_hr (variable rule PartnerArea) is

 NORTH_AMERICA > US

 ; SOUTH_AMERICA = BR + UY + AR + CL

end hierarchical ruleset

4) Example of an aggregate Code Item having multiple definitions to be used for validation only. The Balance of
Payments item “Transport” can be broken down by type of carrier (Air transport, Sea transport, Land transport) and
by type of objects transported (Passengers and Freights) and both breakdowns must sum up to the total “Transport”
figure.

define hierarchical ruleset validationruleset_bop (variable rule BoPItem) is

 transport_method1 : Transport = AirTransport + SeaTransport +
 LandTransport

 ; transport_method2 : Transport = PassengersTransport +
 FreightsTransport

end hierarchical ruleset

44 “Coincides” means “implies and is implied”

Reference Manual

101

VTL-DL – User Defined Operators

define operator

Syntax

define operator operator_name ({ parameter { , parameter }* }) | **{**returns outputType } is operatorBody | end
define operator

parameter::= parameterName parameterType { default parameterDefaultValue }

Syntax description

operator_name the name of the operator

parameter the names of parameters, their data types and
defaultvalues

outputType the data type of the artefact returned by the operator

operatorBody the expression which defines the operation

parameterName the name of the parameter

parameterType the data type of the parameter

parameterDefaultValue the default value for the parameter (optional)

Input parameters type

operator_name:

name

outputType:

a VTL data type (see the Data Type Syntax below)

operatorBody:

a VTL expression having the parameters (i.e., parameterName) as the operands

parameterName:

name

parameterType:

a VTL data type (see the Data Type Syntax below)

parameterDefaultValue:

a Value of the same type as the parameter

Constraints

• Each parameterName must be unique within the list of parameters

• parameterDefaultValue must be of the same data type as the corresponding parameter

• if outputType is specified then the type of operatorBody must be compatible with outputType

• If outputType is omitted then the type returned by the operatorBody expression is assumed

• If parameterDefaultValue is specified then the parameter is optional

Reference Manual

102

Semantic specification

This operator defines a user-defined Operator by means of a VTL expression, specifying also the parameters, their
data types, whether they are mandatory or optional and their (possible) default values.

Examples

Example 1:

define operator max1 (x integer, y integer)
 returns boolean is

 if x > y then x else y

end operator

Example 2:

define operator add (x integer default 0, y integer default 0)
 returns number is

 x+y
end operator

Data type syntax

The VTL data types are described in the VTL User Manual. Types are used throughout this Reference Manual as
both meta-syntax and syntax.

They are used as meta-syntax in order to define the types of input and output parameters in the descriptions of VTL
operators; they are used in the syntax, and thus are proper part of the VTL, in order to allow other operators to refer
to specific data types. For example, when defining a custom operator (see the define operator above), one will need
to declare the type of the input/output parameters.

The syntax of the data types is described below (as for the meaning of these definitions, see the section VTL Data
Types in the User Manual). See also the section “Conventions for describing the operators’ syntax” in the chapter
“Overview of the language and conventions” above.

dataType ::= scalarType | scalarSetType | componentType | datasetType | operatorType | rulesetType

scalarType ::= { basicScalarType_| valueDomainName | setName }1 { scalarTypeConstraint } { { not } null }

basicScalarType ::= scalar | number | integer | string | boolean | time | date | time_period | duration

scalarTypeConstraint ::= [valueBooleanCondition]| { scalarLiteral { , scalarLiteral }* }

scalarSetType ::= set { < scalarType > }

componentType ::= componentRole { < scalarType > }

componentRole ::= component | identifier | measure | attribute | viral attribute

datasetType ::= dataset { { componentConstraint { , componentConstraint }* } }

componentConstraint ::= componentType { componentName | multiplicityModifier }1

multiplicityModifier ::= _ { + | * }

operatorType ::= inputParameterType { * inputParameterType }* } -> outputParameterType

inputParameterType ::= scalarType | scalarSetType | componentType | datasetType | rulesetType

outputParameterType ::= scalarType | componentType | datasetType

rulesetType ::= { ruleset | dpRuleset | hrRuleset}1

dpRuleset ::= datapoint |

datapoint_on_valuedomains { (name { * name }*) } |
datapoint_on_variables { (name { * name }*) }

hrRuleset ::= hierarchical |

Reference Manual

103

hierarchical_on_valuedomains { valueDomainName { (condValueDomainName { * condValueDomainName
}*) } } } |
hierarchical_on_variables { variableName { (condValueDomainName { * condValueDomainName }*) } } }

Note that the valueBooleanCondition in scalarTypeConstraint is expressed with reference to the fictitious variable
“value” (see also the User Manual, section “Conventions for describing the Scalar Types”), which represents the
generic value of the scalar type, for example:

integer { 0, 1 } means an integer number whose value is 0 or 1

number [value >= 0] means a number greater or equal than 0

string { “A”, “B”, “C” } means a string whose value is A, B or C

string [length (value) <= 6] means a string whose length is lower or equal than 6

General examples of the syntax for defining types can be found in the User Manual, section VTL Data Types and in
the declaration of the data types of the VTL operators (sub-sections “input parameters type” and “result type”).

VTL-ML - Typical behaviours of the ML Operators
In this section, the common behaviours of some class of VTL-ML operators are described, both for a better
understanding of the characteristics of such classes and to factor out and not repeat the explanation for each
operator of the class.

Typical behaviour of most ML Operators

Unless differently specified in the Operator description, the Operators can be applied to Scalar Values, to Data Sets
and to Data Set Components.

The operations on Scalar Values are primitive and are part of the core of the language. The other kind of operations
can be typically be obtained by means of the scalar operations in conjunction with the Join operator, which is part of
the core too.

In the operations on Data Set, the Operators are meant to be applied by default only to the values of the Measures of
the input Data Sets, leaving the Identifiers unchanged. The Attributes follow by default their specific propagation
rules, which are described in the User Manual.

In the operations on Components, the Operators are meant to be applied on the specified components of one input
Data Set, in order to calculate a new component which becomes part of the resulting Data Set. In this case, the
Attributes can be operated like the Measures.

Operators applicable on one Scalar Value or Data Set or Data Set Component

Operations on Scalar values

The operator is applied on a scalar value and returns a scalar value.

Operations on Data Sets

The operator is applied on a Data Set and returns a Data Set.

For example, using a functional style and denoting the operator with f (…), this can written as:

DS_r := f (DS_1)

The same operation, using an infix style and denoting the operator as op, can be also written as

DS_r := op DS_1

This means that the operator is applied to the values of all the Measures of DS_1 in order to produce homonymous
Measures in DS_r.

The application of the operator is allowed only if all the Measures of the operand Data Set are of a data type
compatible with the operator (for example, a numeric operator is applicable only if all the Measures of the operand
Data Sets are numeric). If the Measures of the operand Data Set are of different types, not all compatible with the
operator to be applied, the membership or the keep clauses can be used to select only the proper Measures. No
applicability constraints exist on Identifiers and Attributes, which can be any.

Reference Manual

104

As for the data content, for each Data Point (DP_1) of the operand Data Set, a result Data Point (DP_r) is returned,
having for the Identifiers the same values as DP_1.

For each Data Point DP_1 and for each Measure, the operator is applied on the Measure value of DP_1 and returns
the corresponding Measure value of DP_r.

For each Data Point DP_1 and for each viral Attribute, the value of the Attribute propagates unchanged in DP_r.

As for the data structure, the result Data Set (DS_r) has the Identifiers and the Measures of the operand Data Set
(DS_1), and has the Attributes resulting from the application of the attribute propagation rules on the Attributes of the
operand Data Set (DS_r maintains the Attributes declared as “viral” in DS_1; these Attributes are considered as
“viral” also in DS_r, the “non-viral” Attributes of DS_1 are not kept in DS_r).

Operations on Data Set Components

The operator is applied on a Component (COMP_1) of a Data Set (DS_1) and returns another Component
(COMP_r) which alters the structure of DS_1 in order to produce the result Data Set (DS_r).

For example, using a functional style and denoting the operator with f (…), this can be written as:

DS_r := DS_1 [calc COMP_r := f (COMP_1)]

The same operation, using an infix style and denoting the operator as op, can be written as:

DS_r := DS_1 [calc COMP_r := op COMP_1]

This means that the operator is applied on COMP_1 in order to calculate COMP_r.

• If COMP_r is a new Component which originally did not exist in DS_1, it is added to the original Components of
DS_1, by default as a Measure (unless otherwise specified), in order to produce DS_r.

• If COMP_r is one of the original Measures or Attributes of DS_1, the values obtained from the application of the
operator f (…) replace the DS_1 original values for such a Measure or Attribute in order to produce DS_r.

• If COMP_r is one of the original Identifiers of DS_1, the operation is not allowed, because the result can
become inconsistent.

In any case, an operation on the Components of a Data Set produces a new Data Set, as in the example above.

The application of the operator is allowed only if the input Component belongs to a data type compatible with the
operator (for example, a numeric operator is applicable only on numeric Components). As already said, COMP_r
cannot have the same name of an Identifier of DS_1.

As for the data content, for each Data Point DP_1 of DS_1, the operator is applied on the values of COMP_1 so
returning the value of COMP_r.

As for the data structure, like for the operations on Data Sets above, the result Data Set (DS_r) has the Identifiers
and the Measures of the operand Data Set (DS_1), and has the Attributes resulting from the application of the
attribute propagation rules on the Attributes of the operand Data Set (DS_r maintains the Attributes declared as
“viral” in DS_1; these Attributes are considered as “viral” also in DS_r, the “non-viral” Attributes of DS_1 are not kept
in DS_r). If an Attribute is explicitly calculated, the attribute propagation rule is overridden.

Moreover, in the case of the operations on Data Set Components, the (possible) new Component DS_r can be
added to the original structure, the role of a (possible) existing DS_1 Component can be altered, the virality of a
(possibly) existing DS_r Attribute can be altered, a (possible) COMP_r non-viral Attribute can be kept in the result.
For the alteration of role and virality see also the calc clause.

Operators applicable on two Scalar Values or Data Sets or Data Set Components

Operation on Scalar values

The operator is applied on two Scalar values and returns a Scalar value.

Operation on Data Sets

The operator is applied either on two Data Sets or on one Data Set and one Scalar value and returns a Data Set.
The composition of a Data Set and a Component is not allowed (it makes no sense).

For example, using a functional style and denoting the operator with f (…), this can be written as:

DS_r := f (DS_1, DS_2)

Reference Manual

105

The same kind of operation, using an infix stile and denoting the operator as op, can be also written as

DS_r := DS_1 op DS_2

This means that the operator is applied to the values of all the couples of Measures of DS_1 and DS_2 having the
same names in order to produce homonymous Measures in DS_r. DS_1 or DS_2 may be replaced by a Scalar
value.

The composition of two Data Sets (DS_1, DS_2) is allowed if the two operand Data Sets have exactly the same
Measures and if all these Measures belong to a data type compatible with the operator (for example, a numeric
operator is applicable only if all the Measures of the operand Data Sets are numeric). If the Measures of the operand
Data Sets are different or of different types not all compatible with the operator to be applied, the membership or the
keep clauses can be used to select only the proper Measures. The composition is allowed if these operand Data
Sets have the same Identifiers or if one of them has at least all the Identifiers of the other one (in other words, the
Identifiers of one of the Data Sets must be a superset of the Identifiers of the other one). No applicability constraints
exist on the Attributes, which can be any.

As for the data content, the operand Data Sets (DS_1, DS_2) are joined to find the couples of Data Points (DP_1,
DP_2), where DP_1 is from the first operand (DS_1) and DP_2 from the second operand (DS_2), which have the
same values as for the common Identifiers. Data Points that are not coupled are left out (the inner join is used). An
operand Scalar value is treated as a Data Point that couples with all the Data Points of the other operand. For each
couple (DP_1, DP_2) a result Data Point (DP_r) is returned, having for the Identifiers the same values as DP_1 and
DP_2.

For each Measure and for each couple (DP_1, DP_2), the Measure values of DP_1 and DP_2 are composed
through the operator so returning the Measure value of DP_r. An operand Scalar value is composed with all the
Measures of the other operand.

For each couple (DP_1, DP_2) and for each Attribute that propagates in DP_r, the Attribute value is calculated by
applying the proper Attribute propagation algorithm on the values of the Attributes of DP_1 and DP_2 .

As for the data structure, the result Data Set (DS_r) has all the Identifiers (with no repetition of common Identifiers)
and the Measures of both the operand Data Sets, and has the Attributes resulting from the application of the attribute
propagation rules on the Attributes of the operands (DS_r maintains the Attributes declared as “viral” for the operand
Data Sets; these Attributes are considered as “viral” also in DS_r, the “non-viral” Attributes of the operand Data Sets
are not kept in DS_r).

Operation on Data Set Components

The operator is applied either on two Data Set Components (COMP_1, COMP_2) belonging to the same Data Set
(DS_1) or on a Component and a Scalar value, and returns another Component (COMP_r) which alters the structure
of DS_1 in order to produce the result Data Set (DS_r). The composition of a Data Set and a Component is not
allowed (it makes no sense).

For example, using a functional style and denoting the operator with f (…), this can be written as:

DS_r := DS_1 [calc COMP_r := f (COMP_1, COMP_2)]

The same operation, using an infix style and denoting the operator as op, can be written as:

DS_r := DS_1 [calc COMP_r := COMP_1 op COMP_2]

This means that the operator is applied on COMP_1 and COMP_2 in order to calculate COMP_r.

• If COMP_r is a new Component which originally did not exist in DS_1, it is added to the original Components of
DS_1, by default as a Measure (unless otherwise specified), in order to produce DS_r.

• If COMP_r is one of the original Measures or Attributes of DS_1, the values obtained from the application of the
operator f (…) replace the DS_1 original values for such a Measure or Attribute in order to produce DS_r.

• If COMP_r is one of the original Identifiers of DS_1, the operation is not allowed, because the result can
become inconsistent.

In any case, an operation on the Components of a Data Set produces a new Data Set, like in the example above.

The composition of two Data Set Components is allowed provided that they belong to the same Data Set 45.
Moreover, the input Components must belong to data types compatible with the operator (for example, a numeric
operator is applicable only on numeric Components). As already said, COMP_r cannot have the same name of an
Identifier of DS_1.

Reference Manual

106

As for the data content, for each Data Point of DS_1, the values of COMP_1 and COMP_2 are composed through
the operator so returning the value of COMP_r.

As for the data structure, the result Data Set (DS_r) has the Identifiers and the Measures of the operand Data Set
(DS_1), and has the Attributes resulting from the application of the attribute propagation rules on the Attributes of the
operand Data Set (DS_r maintains the Attributes declared as “viral” in DS_1; these Attributes are considered as
“viral” also in DS_r, the “non-viral” Attributes of DS_1 are not kept in DS_r). If an Attribute is explicitly calculated, the
attribute propagation rule is overridden.

Moreover, in the case of the operations on Data Set Components, a (possible) new Component DS_r can be added
to the original structure of DS_1, the role of a (possibly) existing DS_1 Component can be altered, the virality of a
(possibly) existing DS_r Attributes can be altered, a (possible) COMP_r non-viral Attribute can be kept in the result.
For the alteration of role and virality see also the calc clause.

Operators applicable on more than two Scalar Values or Data Set Components

The cases in which an operator can be applied on more than two Data Sets (like the Join operators) are described in
the relevant sections.

Operation on Scalar values

The operator is applied on more Scalar values and returns a Scalar value according to its semantics.

Operation on Data Set Components

The operator is applied either on a combination of more than two Data Set Components (COMP_1, COMP_2)
belonging to the same Data Set (DS_1) or Scalar values, and returns another Component (COMP_r) which alters the
structure of DS_1 in order to produce the result Data Set (DS_r). The composition of a Data Set and a Component is
not allowed (it makes no sense).

For example, using a functional style and denoting the operator with f (…), this can be written as:

DS_r := DS_1 [substr COMP_r := f (COMP_1, COMP_2, COMP_3)]

This means that the operator is applied on COMP_1, COMP_2 and COMP_3 in order to calculate COMP_r.

• If COMP_r is a new Component which originally did not exist in DS_1, it is added to the original Components of
DS_1, by default as a Measure (unless otherwise specified), in order to produce DS_r.

• If COMP_r is one of the original Measures or Attributes of DS_1, the values obtained from the application of the
operator f (…) replace the DS_1 original values for such a Measure or Attribute in order to produce DS_r.

• If COMP_r is one of the original Identifiers of DS_1, the operation is not allowed, because the result can
become inconsistent.

In any case, an operation on the Components of a Data Set produces a new Data Set, like in the example above.

The composition of more Data Set Components is allowed provided that they belong to the same Data Set 46.
Moreover, the input Components must belong to data types compatible with the operator (for example, a numeric
operator is applicable only on numeric Components). As already said, COMP_r cannot have the same name of an
Identifier of DS_1.

As for the data content, for each Data Point of DS_1, the values of COMP_1, COMP_2 and COMP_3 are composed
through the operator so returning the value of COMP_r.

As for the data structure, the result Data Set (DS_r) has the Identifiers and the Measures of the operand Data Set
(DS_1), and has the Attributes resulting from the application of the attribute propagation rules on the Attributes of the
operand Data Set (DS_r maintains the Attributes declared as “viral” in DS_1; these Attributes are considered as
“viral” also in DS_r, the “non-viral” Attributes of DS_1 are not kept in DS_r). If an Attribute is explicitly calculated, the
attribute propagation rule is overridden.

Moreover, in the case of the operations on Data Set Components, a (possible) new Component DS_r can be added
to the original structure of DS_1, the role of a (possibly) existing DS_1 Component can be altered, the virality of a
(possibly) existing DS_r Attributes can be altered, a (possible) COMP_r non-viral Attribute can be kept in the result.
For the alteration of role and virality see also the calc clause.

Reference Manual

107

Behaviour of Boolean operators

The Boolean operators are allowed only on operand Data Sets that have a single measure of type boolean. As for
the other aspects, the behaviour is the same as the operators applicable on one or two Data Sets described above.

Behaviour of Set operators

These operators apply the classical set operations (union, intersection, difference, symmetric differences) to the Data
Sets, considering them as sets of Data Points. These operations are possible only if the Data Sets to be operated
have the same data structure, and therefore the same Identifiers, Measures and Attributes 47.

Behaviour of Time operators

The time operators are the operators dealing with time, date and time_period basic scalar types. These types are
described in the User Manual in the sections “Basic Scalar Types” and “External representations and literals used in
the VTL Manuals”.

The time-related formats used for explaining the time operators are the following (they are described also in the User
Manual).

For the time values:

YYYY-MM-DD/YYYY-MM-DD

Where YYYY are 4 digits for the year, MM two digits for the month, DD two digits for the day. For example:

2000-01-01/2000-12-31 the whole year 2000

2000-01-01/2009-12-31 the first decade of the XXI century

For the date values:

YYYY-MM-DD

The meaning of the symbols is the same as above. For example:

2000-12-31 the 31st December of the year 2000

2010-01-01 the first of January of the year 2010

For the time_period values:

YYYY{P}{NNN}

Where YYYY are 4 digits for the year, P is one character for the period indicator of the regular period (it refers to
the duration data type and can assume one of the possible values listed below), NNN are from zero to three
digits which contain the progressive number of the period in the year. For annual data the A and the three digits
NNN can be omitted. For example:

2000M12 the month of December of the year 2000 (duration: M)

2010Q1 the first quarter of the year 2010 (duration: Q)

2010A the whole year 2010 (duration: A)

2010 the whole year 2010 (duration: A)

For the duration values, which are the possible values of the period indicator of the regular periods above, it is used
for simplicity just one character whose possible values are the following:

Code Duration

D Day

W Week

M Month

Q Quarter

S Semester

A Year

Reference Manual

108

As mentioned in the User Manual, these are only examples of possible time-related representations, each VTL
system is free of adopting different ones. In fact no predefined representations are prescribed, VTL systems are free
to using they preferred or already existing ones.

Several time operators deal with the specific case of Data Sets of time series, having an Identifier component that
acts as the reference time and can be of one of the scalar types time, date or time_period; moreover this Identifier
must be periodical, i.e. its possible values are regularly spaced and therefore have constant duration (frequency).

It is worthwhile to recall here that, in the case of Data Sets of time series, VTL assumes that the information about
which is the Identifier Components that acts as the reference time and which is the period (frequency) of the time
series exists and is available in some way in the VTL system. The VTL Operators are aware of which is the reference
time and the period (frequency) of the time series and use these information to perform correct operations. VTL also
assumes that a Value Domain representing the possible periods (e.g. the period indicator Value Domain shown
above) exists and refers to the duration scalar type. For the assumptions above, the users do not need to specify
which is the Identifier Component having the role of reference time.

The operators for time series can be applied only on Data Sets of time series and returns a Data Set of time series.
The result Data Set has the same Identifier, Measure and Attribute Components as the operand Data Set and
contains the same time series as the operand. The Attribute propagation rule is not applied.

Operators changing the data type

These Operators change the Scalar data type of the operands they are applied to (i.e. the type of the result is
different from the type of the operand). For example, the length operator is applied to a value of string type and
returns a value of integer type. Another example is the cast operator.

Operation on Scalar values

The operator is applied on (one or more) Scalar values and returns one Scalar value of a different data type.

Operation on Data Sets

If an Operator change the data type of the Variable it is applied to (e.g., from string to number), the result Data Set
cannot maintain this Variable as it happens in the previous cases, because a Variable cannot have different data
types in different Data Sets 48.

As a consequence, the converted variable cannot follow the same rules described in the sections above and must be
replaced, in the result Data Set, by another Variable of the proper data type.

For sake of simplicity, the operators changing the data type are allowed only on mono-measure operand Data Sets,
so that the conversion happens on just one Measure. A default generic Measure is assigned by default to the result
Data Set, depending on the data type of the result (the default Measure Variables are reported in the table below).

Therefore, if the operands are originally multi-measure, just one Measure must be pre-emptively selected (for
example through the membership operator) in order to apply the changing-type operator. Moreover, if in the result
Data Set a different Measure Variable name is desired than the one assigned by default, it is possible to change the
Variable name (see the rename operator).

As for the Identifiers and the Attributes, the behaviour of these operators is the same as the typical behaviour of the
unary or binary operators.

Operation on Data Set Components

For the same reasons above, the result Component cannot be the same as one of the operand Components and
must be of the appropriate Scalar data type.

Default Names for Variables and Value Domains used in this manual

The following table shows the default Variable names and the relevant default Value Domain. These are only the
names used in this manual for explanatory purposes and can be personalised in the implementations. If VTL rules
are exchanged, the personalised names need to be shared with the partners of the exchange.

Scalar data type Default Variable Default Value Domain

string string_var string_vd

number num_var num_vd

integer int_var int_vd

Reference Manual

109

time time_var time_vd

time_period time_period_var time_period_vd

date date_var date_vd

duration duration_var duration_vd

boolean bool_var bool_vd

Type Conversion and Formatting Mask

The conversions between scalar types is provided by the operator cast, described in the section of the general
purpose operators. Some particular types of conversion require the specification of a formatting mask, which
specifies which format the source or the destination of the conversion should assume. The formatting masks for the
various scalar types are explained here.

If needed, the formatting Masks can be personalized in the VTL implementations. If VTL rules are exchanged, the
personalised masks need to be shared with the partners of the exchange.

The Numbers Formatting Mask

The number formatting mask can be defined as a combination of characters whose meaning is the following:

• “D” one numeric digit (for the mantissa of the scientific notation)

• “E” one numeric digit (for the exponent of the scientific notation)

• “*” an arbitrary number of digits

• “+” at least one digit

• “.” (dot) can be used as a separator between the integer and the decimal parts.

• “,” (comma) can be used as a separator between the integer and the decimal parts.

Examples of valid masks are:

DD.DDDDD, DD.D, D, D.DDDD, D*.D*, D+.D+ , DD.DDDEEEE

The Time Formatting Mask

The format of the values of the types time, date and time_period can be specified through specific formatting masks.
A mask related to time, date and time_period is formed by a sequence of symbols which denote:

• the time units that are used, for example years, months, days

• the format in which they are represented, for example 4 digits for the year (2018), 2 digits for the month within
the year (04 for April) and 2 digits for the day within the year and the month (05 for the 5th)

• the order of these parts; for example, first the 4 digits for the year, then the 2 digits for the month and finally the
2 digits for the day

• other (possible) typographical characters used in the representation; for example, a line between the year and
the month and between the month and the day (e.g., 2018-04-05).

The time formatting masks follows the general rules below.

For a numerical representations of the time units:

• A digit is denoted through the use of a special character which depends on the time unit. for example Y is for
“year”, M is for “month” and D is for “day”

• The special character is lowercase for the time units shorter than the day (for example h for “hour”, m for
“minute”, s for “second”) and uppercase for time units equal to “day” or longer (for example W for “week”, Q for
“quarter”, S for “semester”)

• The number of letters matches the number of digits, for example YYYY means that the year is represented with
four digits and MM that the month is of 2 digits

• The numerical representation is assumed to be padded by leading 0 by default, for example MM means that
April is represented as 04 and the year 33 AD as 0033

Reference Manual

110

• If the numerical representation is not padded, the optional digits that can be omitted (if equal to zero) are
enclosed within braces; for example {M}M means that April is represented by 4 and December by 12, while
{YYY}Y means that the 33 AD is represented by 33

For textual representations of the time units:

• Special words denote a textual localized representation of a certain unit, for example DAY means a textual
representation of the day (MONDAY, TUESDAY …)

• An optional number following the special word denote the maximum length, for example DAY3 is a textual
representation that uses three characters (MON, TUE …)

• The case of the special word correspond to the case of the value; for example day3 (lowercase) denotes the
values mon, tue …

• The case of the initial character of the special word correspond to the case of the initial character of the time
format; for example Day3 denotes the values Mon, Tue …

• The letter P denotes the period indicator, (i.e., day, week, month …) and the letter p denotes the number of
periods

Representation of more time units:

• If more time units are used in the same mask (for example years, months, days), it is assumed that the more
detailed units (e.g., the day) are expressed through the order number that they assume within the less detailed
ones (e.g., the month and the year). For example, if years, weeks and days are used, the weeks are within the
year (from 1 to 53) and the days are within the year and the week (from 1 to 7).

• The position of the digits in the mask denotes the position of the corresponding values; for example,
YYYMMDD means four digits for the year followed by two digits for the month and then two digits for the day
(e.g., 20180405 means the year 2018, month April, day 5th)

• Any other character can be used in the mask, meaning simply that it appears in the same position; for example,
YYYY-MM-DD means that the values of year, month and day are separated by a line (e.g., 2018-04-05 means
the year 2018, month April, day 5th) and \PMM denotes the letter “P” followed by two characters for the month.

• The special characters and the special words, if prefixed by the reverse slash (\) in the mask, appear in the
same position in the time format; for example \PMM\M means the letter “P” followed by two characters for the
month and then the letter “M”; for example, P03M means a period of three months (this is an ISO 8601 standard
representation for a period of MM months). The reverse slash can appear in the format if needed by prefixing it
with another reverse slash; for example YYYY\MM means for digits for the year, a reverse slash and two digits
for the month.

The special characters and the corresponding time units are the following:

C century

Y year

S semester

Q quarter

M month

W week

D day

h hour digit (by default on 24 hours)

m minute

s second

d decimal of second

P period indicator (see the “duration” codes below)

p number of periods

The special words for textual representations are the following:

AM/PM indicator of AM / PM (e.g. am/pm for “am” or “pm”)

Reference Manual

111

MONTH textual representation of the month (e.g., JANUARY for January)

DAY textual representation of the day (e.g., MONDAY for Monday)

Examples of formatting masks for the time scalar type:

A Scalar Value of type time denotes time intervals of any duration and expressed with any precision, which are the
intervening time between two time points.

These examples are about three possible ISO 8601 formats for expressing time intervals:

• Start and end time points, such as “2015-03-03T09:30:45Z/2018-04-05T12:30:15Z”

VTL Mask: YYYY-MM-DDThh:mm:ssZ/YYYY-MM-DDThh:mm:ssZ

• Start and duration, such as “2015-03-03T09:30:45-01/P1Y2M10DT2H30M”

VTL Mask: YYYY-MM-DDThh:mm:ss-01/PY\YM\MDD\DT{h}h\Hmm\M

• Duration and end, such as “P1Y2M10DT2H30M/2018-04-05T12:30:00+02”

VTL Mask: PY\YM\MDD\DT{h}h\Hmm\M/YYYY-MM-DDThh:mm:ssZ

Example of other possible ISO formats having accuracy reduced to the day

• Start and end, such as “20150303/20180405”

VTL Mask: YYYY-MM-DD/YYYY-MM-DD

• Start and duration, such as “2015-03-03/P1Y2M10D”

VTL Mask: YYYY-MM-DD/PY\YM\MDD\D

• Duration and end, such as “P1Y2M10D/2018-04-05”

VTL Mask: PY\YM\MDD\DT/YYYY-MM-DD

Examples of formatting masks for the date scalar type:

A date scalar type is a point in time, equivalent to an interval of time having coincident start and end duration equal to
zero.

These examples about possible ISO 8601 formats for expressing dates:

• Date and day time with separators: “2015-03-03T09:30:45Z”

VTL Mask: YYYY-MM-DDThh:mm:ssZ

• Date and day time without separators “20150303T093045-01 “

VTL Mask: YYYYMMDDThhmmss-01

Example of other possible ISO formats having accuracy reduced to the day

• Date and day-time with separators “2015-03-03/2018-04-05”

VTL Mask: YYYY-MM-DD/YYYY-MM-DD

• Start and duration, such as “2015-03-03/P1Y2M10D”

VTL Mask: YYYY-MM-DD/PY\YM\MDD\D

Examples of formatting masks for the time_period scalar type:

A time_period denotes non-overlapping time intervals having a regular duration (for example the years, the quarters
of years, the months, the weeks and so on). The time_period values include the representation of the duration of the
period.

These examples are about possible formats for expressing time-periods:

• Generic time period within the year such as: “2015Q4”, “2015M12””2015D365”

VTL Mask: YYYYP{ppp} where P is the period indicator and ppp three digits for the number of periods, in the
values, the period indicator may assume one of the values of the duration scalar type listed below.

• Monthly period: “2015M03”

VTL Mask: YYYY\MMM

Reference Manual

112

Examples of formatting masks for the duration scalar type:

A Scalar Value of type duration denotes the length of a time interval expressed with any precision and without
connection to any particular time point (for example one year, half month, one hour and fifteen minutes).

These examples are about possible formats for expressing durations (period / frequency)

• Non ISO representation of the duration in one character, whose possible codes are:

Code Duration

D Day

W Week

M Month

Q Quarter

S Semester

A Year

VTL Mask: P (period indicator)

• ISO 8601 composite duration: “P10Y2M12DT02H30M15S” (P stands for “period”)

VTL Mask: \PYY\YM\MDD\DThh\Hmm\Mss\S

• ISO 8601 duration in weeks: “P018W” (P stands for “period”)

VTL Mask: \PWWW\W

• ISO 4 characters representation: P10M (ten months), P02Q (two quarters) …

VTL Mask: \PppP

Examples of fixed characters used in the ISO 8601 standard which can appear as fixed characters in the
relevant masks:

P designator of duration

T designator of time

Z designator of UTC zone

“+” designator of offset from UTC zone

”-“ designator of offset form UTC zone

/ time interval separator

Attribute propagation

The VTL has different default behaviours for Attributes and for Measures, to comply as much as possible with the
relevant manipulation needs. At the Data Set level, the VTL Operators manipulate by default only the Measures and
not the Attributes. At the Component level, instead, Attributes are calculated like Measures, therefore the algorithms
for calculating Attributes, if any, can be specified explicitly in the invocation of the Operators. This is the behaviour of
clauses like calc, keep, drop, rename and so on, either inside or outside the join (see the detailed description of
these operators in the Reference Manual).

The users which want to automatize the propagation of the Attributes’ Values can optionally enforce a mechanism,
called Attribute Propagation rule, whose behaviour is explained in the User Manual (see the section “Behaviour for
Attribute Components”). The adoption of this mechanism is optional, users are free to allow the attribute propagation
rule or not. The users that do not want to allow Attribute propagation rules simply will not implement what follows.

In short, the automatic propagation of an Attribute depends on a Boolean characteristic, called “virality”, which can be
assigned to any Attribute of a Data Set (a viral Attribute has virality = TRUE, a non-viral Attribute has virality=FALSE,
if the virality is not defined, the Attribute is considered as non-viral).

By default, an Attribute propagates from the operand Data Sets (DS_i) to the result Data Set (DS_r) if it is “viral” at
least in one of the operand Data Sets. By default, an Attribute which is viral in one of the operands DS_i is
considered as viral also in the result DS_r.

Reference Manual

113

The Attribute propagation rule does not apply for the time series operators.

The Attribute propagation rule does not apply if the operations on the Attributes to be propagated are explicitly
specified in the expression (for example through the keep and calc operators). This way it is possible to keep in the
result also Attribute which are non-viral in all the operands, to drop viral Attributes, to override the (possible) default
calculation algorithm of the Attribute, to change the virality of the resulting Attributes.

45 As obvious, the input Data Set can be the result of a previous composition of more other Data
Sets, even within the same expression

46 As obvious, the input Data Set can be the result of a previous composition of more other Data
Sets, even within the same expression

47 According to the VTL IM, the Variables that have the same name have also the same data type

48 This according both to the mathematical meaning of a Variable and the VTL Information Model;
in fact a Represented Variable is defined on just one Value Domain, which has just one data
type, independently of the Data Structures and the Data Sets in which the Variable is used.

Operators

VTL-ML - General Purpose Operators

Parentheses: ()

Syntax

(op)

Input parameters

op
the operand to be evaluated before performing other
operations written outside the parentheses.
According to the general VTL rule, operators can be
nested, therefore any Data Set,
Component or scalar op can be obtained through an
expression as complex as needed
(for example op can be written as the expression 2 + 3
).

Examples of valid syntaxes

(DS_1 + DS_2)
(CMP_1 - CMP_2)
(2 + DS_1)
(DS_2 - 3 * DS_3)

Semantics for scalar operations

Parentheses override the default evaluation order of the operators that are described in the section “VTL-ML -
Evaluation order of the Operators”. The operations enclosed in the parentheses are evaluated first. For example
(2+3)*4 returns 20, instead 2+3*4 returns 14 because the multiplication has higher precedence than the addition.

Input parameters type

op

dataset
| component
| scalar

Reference Manual

114

Result type

result

dataset
| component
| scalar

Additional Constraints

None.

Behaviour

As mentioned, the op of the parentheses can be obtained through an expression as complex as needed (for example
op can be written as DS_1 - DS_2). The part of the expression inside the parentheses is evaluated before the part
outside of the parentheses. If more parentheses are nested, the inner parentheses are evaluated first, for example
(20 - 10 / (2 + 3)) * 3 would give 54.

Examples

Given the operand datasets DS_1 and DS_2:

Input DS_1 (see structure)

Id_1 Id_2 Me_1 Me_2

10 A 5 5.0

10 B 2 10.5

11 A 3 12.2

11 B 4 20.3

Input DS_2 (see structure)

Id_1 Id_2 Me_1 Me_2

10 A 10 3.0

10 C 11 6.2

11 B 6 7.0

Example 1

DS_r := (DS_1 + DS_2) * DS_2;

results in (see structure):

DS_r

Id_1 Id_2 Me_1 Me_2

10 A 150 24.0

11 B 60 191.1

Persistent assignment: <-

Syntax

re <- op

Reference Manual

115

https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/General%20purpose%20operators/Parentheses/examples/ds_1.json
https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/General%20purpose%20operators/Parentheses/examples/ds_2.json
https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/General%20purpose%20operators/Parentheses/examples/ex_1.json

Input parameters

re the result

right
the operand. According to the general VTL rule
allowing the indentation of the operators,
op can be obtained through an expression as complex
as needed
(for example op can be the expression DS_1 - DS_2).

Examples of valid syntaxes

DS_r <- DS_1
DS_r <- DS_1 - DS_2

Semantics for scalar operations

Empty

Input parameters type

op

dataset

Result type

result

dataset

Additional Constraints

The assignment cannot be used at Component level because the result of a Transformation cannot be a Data Set
Component. When operations at Component level are invoked, the result is the Data Set which the output
Components belongs to.

Behaviour

The input operand op is assigned to the persistent result re, which assumes the same value as op. As mentioned,
the operand op can be obtained through an expression as complex as needed (for example op can be the
expression DS_1 - DS_2).

The result re is a persistent Data Set that has the same data structure as the Operand. For example in
DS_r <- DS_1 the data structure of DS_r is the same as the one of DS_1.

If the Operand op is a scalar value, the result Data Set has no Components and contains only such a scalar value.
For example, income <- 3 assigns the value 3 to the persistent Data Set named income.

Examples

Given the operand dataset DS_1:

Input DS_1 (see structure)

Id_1 Id_2 Me_1 Me_2

2013 Belgium 5 5

2013 Denmark 2 10

2013 France 3 12

2013 Spain 4 20

Reference Manual

116

https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/General%20purpose%20operators/Persistent%20assignment/examples/ds_1.json

Example 1

DS_r <- DS_1;

results in (see structure):

DS_r

Id_1 Id_2 Me_1 Me_2

2013 Belgium 5 5

2013 Denmark 2 10

2013 France 3 12

2013 Spain 4 20

Non-persistent assignment: :=`

Syntax

re := op

Input parameters

re the result

right
the operand. According to the general VTL rule
allowing the indentation of the operators,
op can be obtained through an expression as complex
as needed
(for example op can be the expression DS_1 - DS_2).

Examples of valid syntaxes

DS_r := DS_1
DS_r := 3
DS_r := DS_1 - DS_2
DS_r := 3 + 2

Semantics for scalar operations

Empty

Input parameters type

op

dataset
| scalar

Result type

re

dataset

Reference Manual

117

https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/General%20purpose%20operators/Persistent%20assignment/examples/ex_1.json

Additional Constraints

The assignment cannot be used at Component level because the result of a Transformation cannot be a Data Set
Component. When operations at Component level are invoked, the result is the Data Set which the output
Components belongs to.

The same symbol denoting the non-persistent assignment Operator (:=) is also used inside other operations at
Component level (for example in calc and aggr) in order to assign the result of the operation to the output
Component: please note that in these cases the symbol := does not denote the non-persistent assignment (i.e., this
Operator), which cannot operate at Component level, but a special keyword of the syntax of the other Operator in
which it is used.

Behaviour

The value of the operand op is assigned to the result re, which is non-persistent and therefore is not stored. As
mentioned, the operand op can be obtained through an expression as complex as needed (for example op can be
the expression DS_1 - DS_2).

The result re is a non-persistent Data Set that has the same data structure as the Operand. For example in
DS_r := DS_1 the data structure of DS_r is the same as the one of DS_1.

If the Operand op is a scalar value, the result Data Set has no Components and contains only such a scalar value.
For example, income := 3 assigns the value 3 to the non-persistent Data Set named income.

Examples

Given the operand dataset DS_1:

Input DS_1 (see structure)

Id_1 Id_2 Me_1 Me_2

2013 Belgium 5 5

2013 Denmark 2 10

2013 France 3 12

2013 Spain 4 20

Example 1

DS_r := DS_1;

results in (see structure):

DS_r

Id_1 Id_2 Me_1 Me_2

2013 Belgium 5 5

2013 Denmark 2 10

2013 France 3 12

2013 Spain 4 20

Membership: #

Syntax

ds # comp

Reference Manual

118

https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/General%20purpose%20operators/Non-persistent%20assignment/examples/ds_1.json
https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/General%20purpose%20operators/Non-persistent%20assignment/examples/ex_1.json

Input parameters

ds the Data Set

cop the Data Set Component

Semantics for scalar operations

This operator cannot be applied to scalar values.

Input parameters type

ds

dataset

comp

name<component>

Result type

result

dataset

Additional Constraints

comp must be a Data Set Component of the Data Set ds.

Behaviour

The membership operator returns a Data Set having the same Identifier Components of ds and a single Measure. If
comp is a Measure in ds, then comp is maintained in the result while all other Measures are dropped. If comp is an
Identifier or an Attribute Component in ds, then all the existing Measures of ds are dropped in the result and a new
Measure is added. The Data Points’ values for the new Measure are the same as the values of comp in ds. A default
conventional name is assigned to the new Measure depending on its type: for example num_var if the Measure is
numeric, string_var if it is string and so on (the default name can be renamed through the rename operator if
needed). The Attributes follow the Attribute propagation rule as usual (viral Attributes of ds are maintained in the
result as viral, non-viral ones are dropped). If comp is an Attribute, it follows the Attribute propagation rule too. The
same symbol denoting the membership operator (#) is also used inside other operations at Component level (for
example in join, calc, aggr) in order to identify the Components to be operated: please note that in these cases the
symbol # does not denote the membership operator (i.e., this operator, which does not operate at Component level),
but a special keyword of the syntax of the other operator in which it is used.

Examples

Given the operand datasets DS_1 and DS_2, where the attribute component At_1 is viral for DS_2 and non-viral for
DS_1:

Input DS_1 (see structure)

Id_1 Id_2 Me_1 Me_2 At_1

1 A 1 5

1 B 2 10 P

2 A 3 12

Input DS_2 (see structure)

Id_1 Id_2 Me_1 Me_2 At_1

1 A 1 5

1 B 2 10 P

Reference Manual

119

https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/General%20purpose%20operators/Membership/examples/ds_1.json
https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/General%20purpose%20operators/Membership/examples/ds_2.json

2 A 3 12

Example 1

DS_r := DS_1#Me_1;

results in (see structure):

DS_r

Id_1 Id_2 Me_1

1 A 1

1 B 2

2 A 3

Example 2

DS_r := DS_1#Id_1;

results in (see structure):

DS_r

Id_1 Id_2 int_var

1 A 1

1 B 1

2 A 2

Example 3

DS_r := DS_1#At_1;

results in (see structure):

DS_r

Id_1 Id_2 string_var

1 A

1 B P

2 A

Example 4

DS_r := DS_2#Me_1;

results in (see structure):

DS_r

Id_1 Id_2 Me_1 At_1

1 A 1

Reference Manual

120

https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/General%20purpose%20operators/Membership/examples/ex_1.json
https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/General%20purpose%20operators/Membership/examples/ex_2.json
https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/General%20purpose%20operators/Membership/examples/ex_3.json
https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/General%20purpose%20operators/Membership/examples/ex_4.json

1 B 2 P

2 A 3

Example 5

DS_r := DS_2#Id_1;

results in (see structure):

DS_r

Id_1 Id_2 int_var At_1

1 A 1

1 B 1 P

2 A 2

Example 6

DS_r := DS_2#At_1;

results in (see structure):

DS_r

Id_1 Id_2 string_var At_1

1 A

1 B P P

2 A

User-defined operator call

Syntax

operatorName ({ argument { , argument }* })

Input parameters

operatorName the name of an existing user-defined operator

argument argument passed to the operator

Examples of valid syntaxes

max1 (2, 3)

Semantics for scalar operations

It depends on the specific user-defined operator that is invoked.

Input parameters type

operatorName

name

Reference Manual

121

https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/General%20purpose%20operators/Membership/examples/ex_5.json
https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/General%20purpose%20operators/Membership/examples/ex_6.json

argument

A data type compatible with the type of the parameter of the user-defined operator
that is invoked (see also the “Type syntax” section).

Result type

result

The data type of the result of the user-defined operator that is invoked
(see also the “Type syntax” section).

Additional Constraints

• operatorName must refer to an operator created with the define operator statement.

• The type of each argument value must be compliant with the type of the corresponding parameter of the user
defined operator (the correspondence is in the positional order).

Behaviour

The invoked user-defined operator is evaluated. The arguments passed to the operator in the invocation are
associated to the corresponding parameters in positional order, the first argument as the value of the first parameter,
the second argument as the value of the second parameter, and so on. An underscore (“_”) can be used to denote
that the value for an optional operand is omitted. One or more optional operands in the last positions can be simply
omitted.

Examples

Example 1

Definition of the max1 operator (see also “define operator” in the VTL-DL):

define operator max1 (x integer, y integer)
returns boolean
is if x > y then x else y
end define operator

User-defined operator call of the max1 operator:

max1 (2, 3)

Evaluation of an external routine: eval

Syntax

eval (externalRoutineName ({ argument } { , argument }*) language languageName returns outputType)

Input parameters

externalRoutineName the name of an external routine

argument the arguments passed to the external routine

language the implementation language of the routine

outputType
the data type of the object returned by eval
(see outputParameterType in Data type syntax)

Examples of valid syntaxes

eval(routine1(DS_1) language “PL/SQL” returns string)

Reference Manual

122

Semantics for scalar operations

This is not a scalar operation.

Input parameters type

externalRoutineName

name

argument

any data type

language

string

outputType

any data type restricting Data Set or scalar

Result type

result

dataset

Additional Constraints

• The eval is the only VTL Operator that does not allow nesting and therefore a Transformation can contain just
one invocation of eval and no other invocations. In other words, eval cannot be nested as the operand of
another operation as well as another operator cannot be nested as an operand of eval

• The result of an expression containing eval must be persistent

• externalRoutineName is the conventional name of a non-VTL routine

• The invoked external routine must be consistent with the VTL principles, first of all its behaviour must be
functional, so having in input and providing in output first-order functions

• argument is an argument passed to the external routine, it can be a name or a value of a VTL artefacts or some
other parameter required by the routine

• The arguments passed to the routine correspond to the parameters of the invoked external routine in positional
order; as usual the optional parameters are substituted by the underscore if missing. The conversion of the VTL
input/output data types from and to the external routine processor is left to the implementation.

Behaviour

The eval operator invokes an external, non-VTL routine, and returns its result as a Data Set or a scalar. The specific
data type can be given in the invocation. The routine specified in the eval operator can perform any internal logic.

Examples

Assuming that SQL3 is an SQL statement which produces DS_r starting from DS_1:

DS_r := eval(SQL3(DS_1) language “PL/SQL”
 returns dataset { identifier<geo_area> ref_area,
 identifier<date> time_,
 measure<number> obs_value,
 attribute<string> obs_status });

Assuming that f is an externally defined Java method:

DS_r := DS_1 [calc Me := eval (f (Me) language “Java” returns integer)];

Reference Manual

123

Type conversion: cast

Syntax

cast (op , scalarType { , mask})

Input parameters

op the operand to be cast

scalarType the name of the scalar type into which op has to be
converted

mask a character literal that specifies the format of op

Semantics for scalar operations

This operator converts the scalar type of op to the scalar type specified by scalarType. It returns a copy of op
converted to the specified scalarType.

Input parameters type

op

dataset{ measure<scalar> _ }
| component<scalar>
| scalar

scalarType

scalar type (see the section: Data type syntax)

mask

string

Result type

result

dataset{ measure<scalar> _ }
| component<scalar>
| scalar

Additional Constraints

• Not all the conversions are possible, the specified casting operation is allowed only according to the semantics
described below.

• The mask must adhere to one of the formats specified below.

Behaviour

Conversions between basic scalar types

The VTL assumes that a basic scalar type has a unique internal and more possible external representations
(formats).

The external representations are those of the Value Domains which refers to such a basic scalar types (more Value
Domains can refer to the same basic scalar type, see the VTL Data Types in the User Manual). For example, there
can exist a boolean Value Domain which uses the values TRUE and FALSE and another boolean Value Domain
which uses the values 1 and 0. The external representations are the ones of the Data Point Values and are obviously
known by users.

Reference Manual

124

The unique internal representation of a basic scalar type, instead, is used by the cast operator as a technical
expedient to make the conversion between external representations easier: users are not necessarily aware of it. In
a conversion, the cast converts the source external representation into the internal representation (of the
corresponding scalar type), then this last one is converted into the target external representation (of the target type).
As mentioned in the User Manual, VTL does not prescribe any specific internal representation for the various scalar
types, leaving different organisations free of using their preferred or already existing ones.

In some cases, depending on the type of op, the output scalarType and the invoked operator, an automatic
conversion is made, that is, even without the explicit invocation of the cast operator: this kind of conversion is called
implicit casting.

In other cases, more than all when the implicit casting is not possible, the type conversion must be specified explicitly
through the invocation of the cast operator: this kind of conversion is called explicit casting. If an explicit casting is
specified, the (possible) implicit casting is overridden; the explicit conversion requires a formatting mask that
specifies how the actual casting is performed.

The table below summarises the possible castings between the basic scalar types. In particular, the input type is
specified in the first column (row headings) and the output type in the first row (column headings).

Provided
(down) /
expected

(right) integer number boolean time date
time_peri

od string duration

integer
•

Implicit Implicit Not
feasible

Not
feasible

Not
feasible

Implicit Not
feasible

number Implicit
•

Implicit Not
feasible

Not
feasible

Not
feasible

Implicit Not
feasible

boolean Implicit Implicit
•

Not
feasible

Not
feasible

Not
feasible

Implicit Not
feasible

time Not
feasible

Not
feasible

Not
feasible •

Not
feasible

Not
feasible

Explicit
with mask

Not
feasible

date Not
feasible

Not
feasible

Not
feasible

Implicit
•

Explicit
w/o mask

Explicit
with mask

Not
feasible

time_peri
od

Not
feasible

Not
feasible

Not
feasible

Implicit Explicit
with mask •

Implicit Not
feasible

string Implicit Explicit
with mask

Not
feasible

Explicit
with mask

Explicit
with mask

Explicit
with mask •

Explicit
with mask

duration Not
feasible

Not
feasible

Not
feasible

Not
feasible

Not
feasible

Not
feasible

Explicit
with mask •

The type of casting can be personalised in specific environments, provided that the personalisation is explicitly
documented with reference to the table above. For example, assuming that an explicit cast with mask is required
and that in a specific environment a definite mask is used for such a kind of conversions, the cast can also become
implicit provided that the mask that will be applied is specified.

The implicit casting is performed when a value of a certain type is provided when another type is expected. Its
behaviour is described here:

• From integer to number: an integer is provided when a number is expected (for example, an integer and a
number are passed as inputs of a n-ary numeric operator); it returns a number having the integer part equal to
the integer and the decimal part equal to zero;

• From integer to string: an integer is provided when a string is expected (for example, an integer is passed as
an input of a string operator); it returns a string having the literal value of the integer;

• From number to string: a number is provided when a string is expected; it returns the string having the literal
value of the number; the decimal separator is converted into the character “.” (dot).

• From boolean to string: a boolean is provided when a string is expected; the boolean value TRUE is converted
into the string “TRUE” and FALSE into the string “FALSE”;

Reference Manual

125

• From date to time: a date (point in time) is provided when a time is expected (interval of time): the conversion
results in an interval having the same start and end, both equal to the original date;

• From time_period to time: a time_period (a regular interval of time, like a month, a quarter, a year…) is
provided when a time (any interval of time) is expected; it returns a time value having the same start and end as
the time_period value.

• From integer to boolean: if the integer is different from 0, then TRUE is returned, FALSE otherwise.

• From number to integer: converts a number with no decimal part into an integer; if the decimal part is present,
a runtime error is raised.

• From number to boolean: if the number is different from 0.0, then TRUE is returned, FALSE otherwise.

• From boolean to integer: TRUE is converted into 1; FALSE into 0.

• From boolean to number: TRUE is converted into 1.0; FALSE into 0.0.

• From time_period to string: it is applied the time_period formatting mask.

• From string to integer: the integer having the literal value of the string is returned; if the string contains a literal
that cannot be matched to an integer, a runtime error is raised.

An implicit cast is also performed from a value domain type or a set type to a basic scalar type: when a scalar
value belonging to a Value Domains or a Set is involved in an operation (i.e., provided as input to an operator), the
value is implicitly cast into the basic scalar type which the Value Domain refers to (for this relationship, see the
description of Type System in the User Manual). For example, assuming that the Component birth_country is defined
on the Value Domain country, which contains the ISO 3166-1 numeric codes and therefore refers to the basic scalar
type integer, the (possible) invocation length(birth_country), which calculates the length of the input string,
automatically casts the values of birth_countr into the corresponding string. If the basic scalar type of the Value
Domain is not compatible with the expression where it is used, an error is raised. This VTL feature is particularly
important as it provides a general behaviour for the Value Domains and relevant Sets, preventing from the need of
defining specific behaviours (or methods or operations) for each one of them. In other words, all the Values inherit
the operations that can be performed on them from the basic scalar types of the respective Value Domains.

The cast operator can be invoked explicitly even for the conversions which allow an implicit cast and in this case the
same behaviour as the implicit cast is applied.

When an explicit casting with mask is required, the conversion is made by applying the formatting mask which
specifies the meaning of the characters in the output string. The formatting Masks are described in the section
“VTL-ML – Typical Behaviour of the ML Operators”, sub-section “Type Conversion and Formatting Mask.

The behaviour of the cast operator for such conversions is the following:

• From time to string: it is applied the time formatting mask.

• From date to time_period: it converts a date into the corresponding daily value of time_period.

• From date to string: it is applied the time_period formatting mask.

• From time_period to date: it is applied a formatting mask which accepts two possible values (“START”,
“END”). If “START” is specified, then the date is set to the beginning of the time_period; if END is specified,
then the date is set to the end of the time_period.

• From string to number: the number having the literal value of the string is returned; if the string contains a
literal that cannot be matched to a number, a runtime error is raised. The number is generated by using a
number formatting mask.

• From string to time: the time having the literal value of the string is returned; if the string contains a literal that
cannot be matched to a date, a runtime error is raised. The time value is generated by using a time formatting
mask.

• From string to date: it converts a string value to a date value.

• From string to time_period: it converts a string value to a time_period value.

• From string to duration: the duration having the literal value of the string is returned; if the string contains a
literal that cannot be matched to a duration, a runtime error is raised. The duration value is generated by using
a time formatting mask.

• From duration to string: a duration (an absolute time interval) is provided when a string is expected; it returns
the string having the default string representation for the duration.

Reference Manual

126

Conversions between basic scalar types and Value Domains or Set types

A value of a basic scalar type can be converted into a value belonging to a Value Domain which refers to such a
scalar type. The resulting scalar value must be one of the allowed values of the Value Domain or Set; otherwise, a
runtime error is raised. This specific use of cast operators does not really correspond to a type conversion; in more
formal terms, we would say that it acts as a constructor, i.e., it builds an instance of the output type. Yet, towards a
homogeneous and possibly simple definition of VTL syntax, we blur the distinction between constructors and type
conversions and opt for a unique formalism. An example is given below.

Conversions between different Value Domain types

As a result of the above definitions, conversions between values of different Value Domains are also possible. Since
an element of a Value Domain is implicitly cast into its corresponding basic scalar type, we can build on it to turn the
so obtained scalar type into another Value Domain type. Of course, this latter Value Domain type must use as a base
type this scalar type.

Examples

Example 1

From string to number:

ds2 := ds1[calc m2 := cast(m1, number, “DD.DDD”) + 2];

In this case we use explicit cast from string to numbers. The mask is used to specify how the string must be
interpreted in the conversion.

Example 2

From string to date:

ds2 := ds1[calc m2 := cast(m1, date, “YYYY-MM-DD”)];

In this case we use explicit cast from string to date. The mask is used to specify how the string must be interpreted in
the conversion.

Example 3

From number to integer:

ds2 := ds1[calc m2 := cast(m1, integer) + 3];

In this case we cast a number into an integer, no mask is required.

Example 4

From number to string:

ds2 := ds1[calc m2 := length(cast(m1, string))];

In this case we cast a number into a string, no mask is required.

Example 5

From date to string:

ds2 := ds1[calc m2 := cast(m1, string, “YY-MON-DAY hh:mm:ss”)];

In this example a date instant is turned into a string. The mask is used to specify the string layout.

Example 6

From string to GEO_AREA:

ds2 := ds1[calc m2 := cast(GEO_STRING, GEO_AREA)];

Reference Manual

127

In this example we suppose we have elements of Value Domain Subset for GEO_AREA. Let GEO_STRING be a
string Component of Data Set ds1 with string values compatible with the GEO_AREA Value Domain Subset. Thus,
the following expression moves ds1 data into ds2, explicitly casting strings to geographical areas.

Example 7

From GEO_AREA to string:

ds2 := ds1[calc m2 := length(GEO_AREA)];

In this example we use a Component GEO_AREA in a string expression, which calculates the length of the
corresponding string; this triggers the automatic cast.

Example 8

From GEO_AREA2 to GEO_AREA1:

ds2 := ds1 [calc m2 := cast (GEO, GEO_AREA1)];

In this example we suppose we have to compare elements two Value Domain Subsets. They are both defined on top
of Strings. The following cast expressions performs the conversion.

Now, Component GEO is of type GEO_AREA2, then we specify it has to be cast into GEO_AREA1. As both work on
strings (and the values are compatible), the conversion is feasible. In other words, the cast of an operand into
GEO_AREA1 would expect a string. Then, as GEO is of type GEO_AREA2, defined on top of strings, it is implicitly
cast to the respective string; this is compatible with what cast expects and it is then able to build a value of type
GEO_AREA1.

Example 9

From string to time_period:

In the following examples we convert from strings to time_periods, by using appropriate masks.

The first quarter of year 2000 can be expressed as follows (other examples are possible):

cast (“2000Q1”, time_period, “YYYY\QQ”)
cast (“2000-Q1”, time_period, “YYYY-\QQ”)
cast (“2000-1”, time_period, “YYYY-Q”)
cast (“Q1-2000”, time_period, “\QQ-YYYY”)
cast (“2000Q01”, time_period, “YYYY\QQQ”)

Examples of daily data:

cast (“2000M01D01”, time_period, “YYYY\MMM\DDD”)
cast (“2000.01.01”, time_period, “YYYY\.MM\.DD”)

VTL-ML - Join operators

The Join operators are fundamental VTL operators. They are part of the core of the language and allow to obtain the
behaviour of the majority of the other non-core operators, plus many additional behaviours that cannot be obtained
through the other operators.

The Join operators are four, namely the inner_join, the left_join, the full_join and the cross_join. Because their syntax
is similar, they are described together.

Join: inner_join, left_join, full_join, cross_join

Syntax

joinOperator (ds1 { as alias1 }, ds2 { as alias2 } { , dsN { as aliasN } }*

{ using usingComp { , usingComp }* }
{ filter filterCondition }

Reference Manual

128

{ apply applyExpr
| calc calcClause
| aggr aggrClause { groupingClause } }
{ keep comp {, comp }* | drop comp {, comp }* }
{ rename compFrom to compTo { , compFrom to compTo }* })

joinOperator: { inner_join | left_join | full_join | cross_join }¹

calcClause ::= { calcRole } calcComp := calcExpr { , { calcRole } calcComp := calcExpr }*

calcRole ::= { identifier | measure | attribute | viral attribute }¹

aggrClause ::= { aggrRole } aggrComp := aggrExpr { , { aggrRole } aggrComp := aggrExpr }*

aggrRole ::= { measure | attribute | viral attribute }¹

groupingClause ::= { group by groupingId { , groupingId }* | group except groupingId { , groupingId }* |
group all conversionExpr }¹ { having havingCondition }

Input parameters

joinOperator the Join operator to be applied

ds1, …, dsN the Data Set operands (at least two must be present) 49

alias
optional aliases for the input Data Sets, valid only within
the “join” operation
to make it easier to refer to them. If omitted, the Data
Set name must be used.

usingComp
component of the input Data Sets whose values have
to match in the join (the
using clause is allowed for the left_join only under
certain constraints
described below and is not allowed at all for the
full_join and cross_join)

filterCondition
a condition (boolean expression) at component level,
having only Components
of the input Data Sets as operands, which is evaluated
for each joined
Data Point and filters them (when TRUE the joined
Data Point is kept,
otherwise it is not kept)

applyExpr
an expression, having the input Data Sets as operands,
which is pairwise applied
to all their homonym Measure Components and
produces homonym Measure
Components in the result; for example if both the Data
Sets ds1 and ds2
have the numeric measures m1 and m2, the clause
apply ds1 + ds2 would
result in calculating m1 := ds1#m1 + ds2#m1 and m2 :=
ds1#m2 + ds2#m2

calcClause
clause that specifies the Components to be calculated,
their roles and their
calculation algorithms, to be applied on the joined and
filtered Data Points.

calcRole the role of the Component to be calculated

calcComp the name of the Component to be calculated

Reference Manual

129

calcExpr
expression at component level, having only
Components of the input
Data Sets as operands, used to calculate a Component

aggrClause
clause that specifies the required aggregations, i.e., the
aggregated
Components to be calculated, their roles and their
calculation algorithm,
to be applied on the joined and filtered Data Points

aggrRole
the role of the aggregated Component to be calculated;
if omitted, the Measure role is assumed

aggrComp
the name of the aggregated Component to be
calculated; this is a dependent
Component of the result (Measure or Attribute, not
Identifier)

aggrExpr
expression at component level, having only
Components of the input
Data Sets as operands, which invokes an aggregate
operator
(e.g. avg, count, max…, see also the corresponding
sections)
to perform the desired aggregation. Note that the count
operator is used in an aggrClause without parameters,
e.g.:
DS_1 [aggr Me_1 := count () group by Id_1)]

groupingClause
the following alternative grouping options:
· group by: the Data Points are grouped by the values
of
the specified Identifiers (groupingId). The Identifiers not
specified are dropped in the result.
· group except: the Data Points are grouped by the
values of
the Identifiers not specified as groupingId. The
specified
Identifiers are dropped in the result.
· group all: converts the values of an Identifier
Component
using conversionExpr and keeps all the resulting
Identifiers.

groupingId
Identifier Component to be kept (in the group by
clause)
or dropped (in the group except clause).

conversionExpr
specifies a conversion operator (e.g. time_agg) to
convert an
Identifier from finer to coarser granularity. The
conversion
operator is applied on an Identifier of the operand Data
Set.

Reference Manual

130

havingCondition
a condition (boolean expression) at component level,
having only Components
of the input Data Sets as operands (and possibly
constants), to be fulfilled
by the groups of Data Points: only groups for which
havingCondition evaluates
to TRUE appear in the result. The havingCondition
refers to the groups specified
through the groupingClause, therefore it must invoke
aggregate operators
(e.g. avg, count, max…, see also the section Aggregate
invocation). A correct
example of havingCondition is max(obs_value) < 1000,
while the condition
obs_value < 1000 is not a right havingCondition,
because it refers to the
values of single Data Points and not to the groups. The
count operator is used
in a havingCondition without parameters, e.g.:
sum (ds group by id1 having count () >= 10)

comp
dependent Component (Measure or Attribute, not
Identifier) to be kept
(in the keep clause) or dropped (in the drop clause)

compFrom the original name of the Component to be renamed

compTo the new name of the Component after the renaming

49 In the previous versions for inner_join only one Data Set operand had to be specified; to be
more consistent and similarly to SQL syntax, at least to operands are required.

Examples of valid syntaxes

inner_join (ds1 as d1, ds2 as d2 using Id1, Id2
 filter d1#Me1 + d2#Me1 <10
 apply d1 / d2
 keep Me1, Me2, Me3
 rename Id1 to Id10, id2 to id20
)
left_join (ds1 as d1, ds2 as d2
 filter d1#Me1 + d2#Me1 <10,
 calc Me1 := d1#Me1 + d2#Me3,
 keep Me1
 rename Id1 to Ident1, Me1 to Meas1
)
full_join (ds1 as d1, ds2 as d2
 filter d1#Me1 + d2#Me1 <10,
 aggr Me1 := sum(Me1), attribute At20 := avg(Me2)
 group by Id1, Id2
 having sum(Me3) > 0
)

Semantics for scalar operations

The join operator does not perform scalar operations.

Input parameters type

ds1, …, dsN

Reference Manual

131

dataset

alias1, …, aliasN

name

usingId

name<component>

filterCondition

component<boolean>

applyExpr

dataset

calcComp

name<component>

calcExpr

component<scalar>

aggrComp

name<component>

aggrExpr

component<scalar>

groupingId

name<identifier>

conversionExpr

component<scalar>

havingCondition

component<boolean>

comp

name<component>

compFrom

component<scalar>

compTo

component<scalar>

Result type

result

dataset

Additional Constraints

The aliases must be all distinct and different from the Data Set names. Aliases are mandatory for Data Sets which
appear more than once in the Join (self-join) and for non-named Data Set obtained as result of a sub-expression.
The using clause is not allowed for the full_join and for the cross_join, because otherwise a non-functional result
could be obtained.

Reference Manual

132

If the using clause is not specified (we will label this case as “Case A”), calling Id(ds■) the set of Identifier
Components of operand ds■, the following group of constraints must hold:

• For inner_join, for each pair ds■, ds■, either Id(ds■) ⊆ Id(ds■) or Id(ds■) ⊆ Id(ds■). In simpler words, the
Identifiers of one of the joined Data Sets must be a superset of the identifiers of all the other ones.

• For left_join and full_join, for each pair ds■, ds■, Id(ds■) = Id(ds■). In simpler words, the joined Data Sets
must have the same Identifiers.

• For cross-join (Cartesian product), no constraints are needed.

If the using clause is specified (we will label this case as “Case B”, allowed only for the inner_join and the left_join),
all the join keys must appear as Components in all the input Data Sets. Moreover two sub-cases are allowed:

• Sub-case B1: the constraints of the Case A are respected and the join keys are a subset of the common
Identifiers of the joined Data Sets;

• Sub-case B2:

• In case of inner_join, one Data Set acts as the reference Data Set which the others are joined to; in case
of left_join, this is the left-most Data Set (i.e., ds■);

• All the input Data Sets, except the reference Data Set, have the same Identifiers [Id■,…, Id■];

• The using clause specifies all and only the common Identifiers of the non-reference Data Sets[Id■,…,
Id■].

The join operators must fulfil also other constraints:

• apply, calc and aggr clauses are mutually exclusive

• keep and drop clauses are mutually exclusive

• comp can be only dependent Components (Measures and Attributes, not Identifiers)

• An Identifier not included in the group by clause (if any) cannot be included in the rename clause

• An Identifier included in the group except clause (if any) cannot be included in the rename clause. If the aggr
clause is invoked and the grouping clause is omitted, no Identifier can be included in the rename clause

• A dependent Component not included in the keep clause (if any) cannot be renamed

• A dependent Component included in the drop clause (if any) cannot be renamed

Behaviour

The semantics of the join operators can be procedurally described as follows.

1. A relational join of the input operands is performed, according to SQL inner (inner_join), left-outer (left_join),
full-outer (full_join) and Cartesian product (cross_join) semantics (these semantics will be explained below),
producing an intermediate internal result, that is a Data Set that we will call “virtual” (VDS■).

2. The filterCondition, if present, is applied on VDS■, producing the Virtual Data Set VDS■.

3. The specified calculation algorithms (apply, calc or aggr), if present, are applied on VDS■. For the Attributes
that have not been explicitly calculated in these clauses, the Attribute propagation rule is applied (see the User
Manual), so producing the Virtual Data Set VDS■.

4. The keep or drop clause, if present, is applied on VDS■, producing the Virtual Data Set VDS■.

5. The rename clause, if present, is applied on VDS■, producing the Virtual Data Set VDS■.

6. The final automatic alias removal is performed in order to obtain the output Data Set.

An alias can be optionally declared for each input Data Set. The aliases are valid only within the “join” operation, in
particular to allow joining a dataset with itself (self join). If omitted, the input Data Sets are referenced only through
their Data Set names. If the aliases are ambiguous (for example duplicated or equal to the name of another Data
Set), an error is raised.

The structure of the virtual Data Set VDS■ which is the output of the relational join is the following.

For the inner_join, the left_join and the full_join, the virtual Data Set contains the following Components:

Reference Manual

133

• The Components used as join keys, which appear once and maintain their original names and roles. In The
cases A and B1, all of them are Identifiers. In the sub-case B2, the result takes the roles from the reference
Data Set.

• In the sub-case B2: the Identifiers of the reference Data Set, which appear once and maintain their original
name and role.

• The other Components coming from exactly one input Data Set, which appear once and maintain their original
name

• The other Components coming from more than one input Data Set, which appears as many times as the Data
Set they come from; to distinguish them, their names are prefixed with the alias (or the name) of the Data Set
they come from, separated by the “#” symbol (e.g., ds■#cmp■). For example, if the Component “population”
appears in two input Data Sets “ds1” and “ds2” that have the aliases “a” and “b” respectively, the Components
“a#population” and “b#population” will appear in the virtual Data Set. If the aliases are not defined, the two
Components are prefixed with the Data Set name (i.e., “ds1#population” and “ds2#population”). In this context,
the symbol “#” does not denote the membership operator but acts just as a separator between the the Data Set
and the Component names.

• If the same Data Set appears more times as operand of the join (self-join) and the aliases are not defined, an
exception is raised because it is not allowed that two or more Components in the virtual Data Set have the
same name. In the self-join the aliases are mandatory to disambiguate the Component names.

• If a Data Set in the join list is the result of a sub-expression, then an alias is mandatory all the same because
this Data Set has no name. If the alias is omitted, an exception is raised.

As for the cross_join, the virtual Data Set contains all the Components from all the operands, possibly prefixed with
the aliases to avoid ambiguities.

The semantics of the relational join is the following.

The join is performed on some join keys, which are the Components of the input Data Sets whose values are used to
match the input Data Points and produce the joined output Data Points.

By default (only for the full_join and the cross_join), the join is performed on the subset of homonym Identifier
Components of the input Data Sets.

The parameter using allows to specify different join keys than the default ones, and can be used only for the
inner_join and the left_join in order to preserve the functional behaviour of the operations.

The different kinds of relational joins behave as follows.

• inner_join: the Data Points of ds1, …, dsN are joined if they have the same values for the common Identifier
Components or, if the using clause is present, for the specified Components. A (joined) virtual Data Point is
generated in the virtual Data Set VDS■ when a matching Data Point is found for each one of the input Data
Sets. In this case, the Values of the Components of a virtual Data Point are taken from the corresponding
Components of the matching Data Points. If there is no match for one or more input Data Sets, no virtual Data
Point is generated.

• left_join: the join is ideally performed stepwise, between consecutive pairs of input Data Sets, starting from the
left side and proceeding towards the right side. The Data Points are matched like in the inner_join, but a virtual
Data Point is generated even if no Data Point of the right Data Set matches (in this case, the Measures and
Attributes coming from the right Data Set take the NULL value in the virtual Data Set). Therefore, for each Data
Points of the left Data Set a virtual Data Point is always generated. These stepwise operations are associative.
More formally, consider the generic pair <ds■, ds■■■>, where ds■ is the result of the left_join of the first “i”
operands and ds■■■ is the i+1th operand. For each pair <ds■, ds■■■>, the joined Data Set is fed with all the
Data Points that match in ds■ and ds■■■ or are only in ds■. The constraints described above guarantee the
absence of null values for the Identifier Components of the joined Data Set, whose values are always taken
from the left Data Set. If the join succeeds for a Data Point in ds■, the values for the Measures and the
Attributes are carried from ds■ and ds■■■ as explained above. Otherwise, i.e., if no Data Point in ds■■■
matches the Data Point in ds■, null values are given to Measures and Attributes coming only from ds■■■.

• full_join: the join is ideally performed stepwise, between consecutive pairs of input Data Sets, starting from the
left side and proceeding toward the right side. The Data Points are matched like in the inner_join and left_join,
but the using clause is not allowed and a virtual Data Point is generated either if no Data Point of the right Data
Set matches with the left Data Point or if no Data Point of the left Data Set matches with the right Data Point (in
this case, Measures and Attributes coming from the non matching Data Set take the NULL value

Reference Manual

134

in the virtual Data Set). Therefore, for each Data Points of the left and the right Data Set, a virtual Data Point is
always generated. These stepwise operations are associative. More formally, consider the generic pair <ds■,
ds■■■>, where ds■ is the result of the full_join of the first “i” operands and ds■■■ is the i+1th operand. For
each pair <ds■, ds■■■>, the resulting Data Set is fed with the Data Points that match in ds■ and ds■■■ or
that are only in ds■ or in ds■■■. If for a Data Point in ds■ the join succeeds, the values for the Measures and
the Attributes are carried from ds■ and ds■■■ as explained. Otherwise, i.e., if no Data Point in ds■■■
matches the Data Point in ds■, NULL values are given to Measures and Attributes coming only from ds■■■.
Symmetrically, if no Data Point in ds■ matches the Data Point in ds■■■, NULL values are given to Measures
and Attributes coming only from ds■. The constraints described above guarantee the absence of NULL values
on the Identifier Components. As mentioned, the using clause is not allowed in this case.

• cross_join: the join is performed stepwise, between consecutive pairs of input Data Sets, starting from the left
side and proceeding toward the right side. No match is performed but the Cartesian product of the input Data
Points is generated in output. These stepwise operations are associative. More formally, consider the ordered
pair <ds■, ds■■■>, where ds■ is the result of the cross_join of the first “i” operands and ds■■■ is the i+1-th
operand. For each pair <ds■, ds■■■>, the resulting Data Set is fed with the Data Points obtained as the
Cartesian product between the Data Points of ds■ and ds■■■. The resulting Data Set will have all the
Components from ds■ and ds■■■. For the Data Sets which have at least one Component in common, the
alias parameter is mandatory. As mentioned, the using parameter is not allowed in this case.

The semantics of the clauses is the following.

• filter takes as input a Boolean Component expression (having type component<boolean>). This clause filters in
or out the input Data Points; when the expression is TRUE the Data Point is kept, otherwise it is not kept in the
result. Only one filter clause is allowed.

• apply combines the homonym Measures in the source operands whose type is compatible with the operators
used in applyExpr, generating homonym Measures in the output. The expression applyExpr can use as input
the names or aliases of the operand Data Sets. It applies the expression to all the n-uples of homonym
Measures in the input Data Sets producing in the target a single homonym Measure for each n-uple. It can be
thought of as the multi-measure version of the calc. For example, if the following aliases have been declared:
d1, d2, d3, then the following expression d1+d2+d3, sums all the homonym Measures in the three input Data
Sets, say M1 and M2, so as to obtain in the result: M1 := d1#M1 + d2#M1 + d3#M1 and M2 := d1#M2 + d2#M2
+ d3#M2. It is not only a compact version of a multiple calc, but also essential when the number of Measures in
the input operands is not known beforehand. Only one apply clause is allowed.

• calc calculates new Identifier, Measure or Attribute Components on the basis of sub-expressions at Component
level. Each Component is calculated through an independent sub-expression. It is possible to specify the role of
the calculated Component among measure, identifier, attribute or viral attribute, therefore the calc clause
can be used also to change the role of a Component when possible. The keyword viral allows controlling the
virality of Attributes (for the Attribute propagation rule see the User Manual). The following rule is used when the
role is omitted: if the component exists in the operand Data Set then it maintains that role; if the component
does not exist in the operand Data Set then the role is measure. The calcExpr are independent one another,
they can only reference Components of the input Virtual Data Set and cannot use Components generated, for
example, by other calcExpr. If the calculated Component is a new Component, it is added to the output virtual
Data Set. If the Calculated component is a Measure or an Attribute that already exists in the input virtual Data
Set, the calculated values overwrite the original values. If the Calculated component is an Identifier that already
exists in the input virtual Data Set, an exception is raised because overwriting an Identifier Component is
forbidden for preserving the functional behaviour. Analytic operators can be used in the calc clause.

• aggr calculates aggregations of dependent Components (Measures or Attributes) on the basis of sub-
expressions at Component level. Each Component is calculated through an independent sub-expression. It is
possible to specify the role of the calculated Component among measure, identifier, attribute, or viral
attribute. The substring viral allows to control the virality of Attributes, if the Attribute propagation rule is
adopted (see the User Manual). The aggr sub-expressions are independent of one another, they can only
reference Components of the input Virtual Data Set and cannot use Components generated, for example, by
other aggr sub-expressions. The aggr computed Measures and Attributes are the only Measures and Attributes
returned in the output virtual Data Set (plus the possible viral Attributes, see below Attribute propagation).
The sub-expressions must contain only Aggregate operators, which are able to compute an aggregated Value
relevant to a group of Data Points. The groups of Data Points to be aggregated are specified through the
groupingClause, which allows the following alternative options. | group by: the Data Points are grouped by the
values of the specified Identifier. The Identifiers not specified are dropped in the result. | group except: the
Data Points are grouped by the values of the Identifiers not specified in the clause. The specified

Reference Manual

135

Identifiers are dropped in the result. | group all: converts an Identifier Component using conversionExpr and
keeps all the resulting Identifiers. | The having clause is used to filter groups in the result by means of an
aggregate condition evaluated on the single groups, for example the minimum number of rows in the group. If
no grouping clause is specified, then all the input Data Points are aggregated in a single group and the clause
returns a Data Set that contains a single Data Point and has no Identifier Components.

• keep maintains in the output only the specified dependent Components (Measures and Attributes) of the input
virtual Data Set and drops the non-specified ones. It has the role of a projection in the usual relational
semantics (specifying which columns have to be projected in). Only one keep clause is allowed. If keep is used,
drop must be omitted.

• drop maintains in the output only the non-specified dependent Components (Measures and Attributes) of the
input virtual Data Set (component<scalar>) and drops the specified ones. It has the role of a projection in the
usual relational join semantics (specifying which columns will be projected out). Only one drop clause is
allowed. If drop is used, keep must be omitted.

• rename assigns new names to one or more Components (Identifier, Measure or Attribute Components). The
resulting Data Set, after renaming all the specified Components, must have unique names of all its Components
(otherwise a runtime error is raised). Only the Component name is changed and not the Component Values,
therefore the new Component must be defined on the same Value Domain and Value Domain Subset as the
original Component (see also the IM in the User Manual). If the name of a Component defined on a different
Value Domain or Set is assigned, an error is raised. In other words, rename is a transformation of the variable
without any change in its values.

The semantics of the Attribute propagation in the join is the following. The Attributes calculated through the calc or
aggr clauses are maintained unchanged. For all the other Attributes that are defined as viral, the Attribute
propagation rule is applied (for the semantics, see the Attribute Propagation Rule section in the User the Manual).
This is done before the application of the drop, keep and rename clauses, which acts also on the Attributes resulting
from the propagation.

The semantics of the final automatic aliases removal is the following. After the application of all the clauses, the
structure of the final virtual Data Set is further modified. All the Components of the form “alias#component_name” (or
“dataset_name#component_name”) are implicitly renamed into “component_name”. This means that the prefixes in
the Component names are automatically removed. It is responsibility of the user to guarantee the absence of
duplicated Component names once the prefixes are removed. In other words, the user must ensure that there are no
pairs of Components whose names are of the form “alias1#c1” and “alias2#c1” in the structure of the virtual Data
Point, since the removal of “alias1” and “alias2” would cause the clash. If, after the aliases removal two Components
have the same name, an error is raised. In particular, name conflicts may derive if the using clause is present and
some homonym Identifier Components do not appear in it; these components should be properly renamed because
cannot be removed; the input Data Set have homonym Measures and there is no apply clause which unifies them;
these Measures can be renamed or removed.

Examples

Given the operand datasets DS_1 and DS_2, DS_3 and that || is the string concatenation:

Input DS_1 (see structure)

Id_1 Id_2 Me_1 Me_2

1 A A B

1 B C D

2 A E F

Input DS_2 (see structure)

Id_1 Id_2 Me_1A Me_2

1 A B Q

1 B S T

3 A Z M

Input DS_3 (see structure)

Reference Manual

136

https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Join%20operators/Join/examples/ds_1.json
https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Join%20operators/Join/examples/ds_2.json
https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Join%20operators/Join/examples/ds_3.json

Id_1 Id_2 Me_1 Me_2

1 A B Q

1 B S T

3 A Z M

Example 1

DS_r := inner_join (DS_1 as d1, DS_2 as d2 keep Me_1, d2#Me_2, Me_1A);

results in (see structure):

DS_r

Id_1 Id_2 Me_1 Me_2 Me_1A

1 A A Q B

1 B C T S

Example 2

DS_r := left_join (DS_1 as d1, DS_2 as d2 keep Me_1, d2#Me_2, Me_1A);

results in (see structure):

DS_r

Id_1 Id_2 Me_1 Me_2 Me_1A

1 A A Q B

1 B C T S

2 A E

Example 3

DS_r := full_join (DS_1 as d1, DS_2 as d2 keep Me_1, d2#Me_2, Me_1A);

results in (see structure):

DS_r

Id_1 Id_2 Me_1 Me_2 Me_1A

1 A A Q B

1 B C T S

2 A E

3 A M Z

Example 4

DS_r := cross_join (DS_1 as d1, DS_2 as d2 rename d1#Id_1 to Id_11, d1#Id_2 to Id_12, d2#Id_1 to Id_21, d2#Id_2 to Id_22, d1#Me_2 to Me12);

results in (see structure):

Reference Manual

137

https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Join%20operators/Join/examples/ex_1.json
https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Join%20operators/Join/examples/ex_2.json
https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Join%20operators/Join/examples/ex_3.json
https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Join%20operators/Join/examples/ex_4.json

DS_r

Id_11 Id_12 Id_21 Id_22 Me_1 Me12 Me_1A Me_2

1 A 1 A A B B Q

1 A 1 B A B S T

1 A 3 A A B Z M

1 B 1 A C D B Q

1 B 1 B C D S T

1 B 3 A C D Z M

2 A 1 A E F B Q

2 A 1 B E F S T

2 A 3 A E F Z M

Example 5

DS_r := inner_join (DS_1 as d1, DS_2 as d2 filter Me_1 = "A" calc Me_4 := Me_1 || Me_1A drop d1#Me_2);

results in (see structure):

DS_r

Id_1 Id_2 Me_1 Me_1A Me_2 Me_4

1 A A B Q AB

Example 6

DS_r := inner_join (DS_1 filter Id_2 ="B" calc Me_2 := Me_2 || "_NEW" keep Me_1, Me_2);

results in (see structure):

DS_r

Id_1 Id_2 Me_1 Me_2

1 B C D_NEW

Example 7

DS_r := inner_join (DS_1 as d1, DS_3 as d2 apply d1 || d2);

results in (see structure):

DS_r

Id_1 Id_2 Me_1 Me_2

1 A AB BQ

1 B CS DT

Reference Manual

138

https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Join%20operators/Join/examples/ex_5.json
https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Join%20operators/Join/examples/ex_6.json
https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Join%20operators/Join/examples/ex_7.json

VTL-ML - String Operators

String concatenation: \

Syntax

op1 || op2

Input parameters

op1, op2 the operands

Semantics for scalar operations

Concatenates two strings. For example, "Hello" || ", World" gives "Hello, World".

Input parameters type

op1, op2

dataset { measure<string> _+ }
| component<string>
| string

Result type

result

dataset { measure<string> _+ }
| component<string>
| string

Additional Constraints

None.

Behavior

The operator has the behaviour of the “Operators applicable on two Scalar Values or Data Sets or Data Set
Components” (see the section “Typical behaviours of the ML Operators”).

Examples

Given the operand datasets DS_1 and DS_2:

Input DS_1 (see structure)

Id_1 Id_2 Me_1

1 A hello

2 B hi

Input DS_2 (see structure)

Id_1 Id_2 Me_1

1 A world

2 B there

Example 1

DS_r := DS_1 || DS_2;

Reference Manual

139

https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/String%20operators/String%20concatenation/examples/ds_1.json
https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/String%20operators/String%20concatenation/examples/ds_2.json

results in (see structure):

DS_r

Id_1 Id_2 Me_1

1 A helloworld

2 B hithere

Example 2

DS_r := DS_1[calc Me_2 := Me_1 || " world"];

results in (see structure):

DS_r

Id_1 Id_2 Me_1 Me_2

1 A hello hello world

2 B hi hi world

Whitespace removal: trim, rtrim, ltrim

Syntax

{ trim | ltrim | rtrim }¹ (op)

Input parameters

op the operand

Semantics for scalar operations

Removes trailing or/and leading whitespace from a string. For example, trim("Hello ") gives "Hello".

Input parameters type

op1

dataset { measure<string> _+ }
| component<string>
| string

Result type

result

dataset { measure<string> _+ }
| component<string>
| string

Additional Constraints

None.

Reference Manual

140

https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/String%20operators/String%20concatenation/examples/ex_1.json
https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/String%20operators/String%20concatenation/examples/ex_2.json

Behavior

The operator has the behaviour of the “Operators applicable on one Scalar Value or Data Set or Data Set
Component” (see the section “Typical behaviours of the ML Operators”).

Examples

Given the operand dataset DS_1 (note that the input data have a whitesapce at the end of the string, which may not
be visualised):

Input DS_1 (see structure)

Id_1 Id_2 Me_1

1 A hello

2 B hi

Example 1

DS_r := rtrim(DS_1);

results in (see structure):

DS_r

Id_1 Id_2 Me_1

1 A hello

2 B hi

Example 2

DS_r := DS_1[calc Me_2:= rtrim(Me_1)];

results in (see structure):

DS_r

Id_1 Id_2 Me_1 Me_2

1 A hello hello

2 B hi hi

Character case conversion: upper/lower

Syntax

{ upper | lower }¹ (op)

Input parameters

op the operand

Examples of valid syntaxes

upper("Hello")
lower(ds_1)

Reference Manual

141

https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/String%20operators/Whitespace%20removal/examples/ds_1.json
https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/String%20operators/Whitespace%20removal/examples/ex_1.json
https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/String%20operators/Whitespace%20removal/examples/ex_2.json

Semantics for scalar operations

Converts the character case of a string in upper or lower case. For example, upper("Hello") gives "HELLO".

Input parameters type

op

dataset { measure<string> _+ }
| component<string>
| string

Result type

result

dataset { measure<string> _+ }
| component<string>
| string

Additional Constraints

None.

Behavior

The operator has the behaviour of the “Operators applicable on one Scalar Value or Data Set or Data Set
Component” (see the section “Typical behaviours of the ML Operators”).

Examples

Given the operand dataset DS_1:

Input DS_1 (see structure)

Id_1 Id_2 Me_1

1 A hello

2 B hi

Example 1

DS_r := upper(DS_1);

results in (see structure):

DS_r

Id_1 Id_2 Me_1

1 A HELLO

2 B HI

Example 2

DS_r := DS_1[calc Me_2:= upper(Me_1)];

results in (see structure):

DS_r

Id_1 Id_2 Me_1 Me_2

Reference Manual

142

https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/String%20operators/Character%20case%20conversion/examples/ds_1.json
https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/String%20operators/Character%20case%20conversion/examples/ex_1.json
https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/String%20operators/Character%20case%20conversion/examples/ex_2.json

1 A hello HELLO

2 B hi HI

Sub-string extraction: substr

Syntax

substr (op, start, length)

Input parameters

op the operand

start the starting digit (first character) of the string to be
extracted

length the length (number of characters) of the string to be
extracted

Examples of valid syntaxes

substr (DS_1, 2 , 3)
substr (DS_1, 2)
substr (DS_1, _ , 3)
substr (DS_1)

Semantics for scalar operations

The operator extracts a substring from op, which must be string type. The substring starts from the startth character
of the input string and has a number of characters equal to the length parameter.

• If start is omitted, the substring starts from the 1st position.

• If length is omitted or overcomes the length of the input string, the substring ends at the end of the input string.

• If start is greater than the length of the input string, an empty string is extracted.

For example:

substr (“abcdefghijklmnopqrstuvwxyz”, 5 , 10) gives: “efghijklmn”
substr (“abcdefghijklmnopqrstuvwxyz”, 25 , 10) gives: “yz”
substr (“abcdefghijklmnopqrstuvwxyz”, 30 , 10) gives: “”

Input parameters type

op

dataset { measure<string> _+ }
| component<string>
| string

start

component < integer [value >= 1] >
| integer [value >= 1]

length

component < integer [value >= 0] >
| integer [value >= 0]

Reference Manual

143

Result type

result

dataset { measure<string> _+ }
| component<string>
| string

Additional Constraints

None.

Behavior

As for the invocations at Data Set level, the operator has the behaviour of the “Operators applicable on one Scalar
Value or Data Set or Data Set Component”. As for the invocations at Component or Scalar level, the operator has
the behaviour of the “Operators applicable on more than two Scalar Values or Data Set Components” (see the
section “Typical behaviours of the ML Operators”).

Examples

Given the operand datasets DS_1 and DS_2:

Input DS_1 (see structure)

Id_1 Id_2 Me_1 Me_2

1 A hello world medium size text

1 B abcdefghilmno short text

2 A pqrstuvwxyz this is a long description

Example 1

DS_r:= substr (DS_1 , 7);

results in (see structure):

DS_r

Id_1 Id_2 Me_1 Me_2

1 A world
size text

1 B ghilmno text

2 A vwxyz s a long description

Example 2

DS_r:= substr (DS_1 , 1 , 5);

results in (see structure):

DS_r

Id_1 Id_2 Me_1 Me_2

1 A hello mediu

1 B abcde short

2 A pqrst this

Reference Manual

144

https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/String%20operators/Sub-string%20extraction/examples/ds_1.json
https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/String%20operators/Sub-string%20extraction/examples/ex_1.json
https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/String%20operators/Sub-string%20extraction/examples/ex_2.json

Example 3

DS_r:= DS_1 [calc Me_2:= substr (Me_2 , 1 , 5)];

results in (see structure):

DS_r

Id_1 Id_2 Me_1 Me_2

1 A hello world mediu

1 B abcdefghilmno short

2 A pqrstuvwxyz this

String pattern replacement: replace

Syntax

replace (op , pattern1, pattern2)

Input parameters

op the operand

pattern1 the pattern to be replaced

pattern2 the replacing pattern

Examples of valid syntaxes

replace(DS_1, "Hello", "Hi")
replace(DS_1, "Hello")

Semantics for scalar operations

Replaces all the occurrences of a specified string-pattern (pattern1) with another one (pattern2). If pattern2 is omitted
then all occurrences of pattern1 are removed. For example:

replace("Hello world", "Hello", "Hi") gives "Hi world"
replace("Hello world", "Hello") gives " world"
replace ("Hello", "ello", "i") gives "Hi"

Input parameters type

op

dataset { measure<string> _+ }
| component<string>
| string

pattern1, pattern2

component<string>
| string

Result type

result

Reference Manual

145

https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/String%20operators/Sub-string%20extraction/examples/ex_3.json

dataset { measure<string> _+ }
| component<string>
| string

Additional Constraints

The second parameter (pattern1) cannot be omitted.

Behaviour

As for the invocations at Data Set level, the operator has the behaviour of the “Operators applicable on one Scalar
Value or Data Set or Data Set Component”. As for the invocations at Component or Scalar level, the operator has
the behaviour of the “Operators applicable on more than two Scalar Values or Data Set Components” (see the
section “Typical behaviours of the ML Operators”).

Examples

Given the operand dataset DS_1:

Input DS_1 (see structure)

Id_1 Id_2 Me_1

1 A hello world

2 A say hello

3 A he

4 A hello!

Example 1

DS_r := replace (DS_1,"ello","i");

results in (see structure):

DS_r

Id_1 Id_2 Me_1

1 A hi world

2 A say hi

3 A he

4 A hi!

Example 2

DS_r := DS_1[calc Me_2:= replace (Me_1,"ello","i")];

results in (see structure):

DS_r

Id_1 Id_2 Me_1 Me_2

1 A hello world hi world

2 A say hello say hi

3 A he he

Reference Manual

146

https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/String%20operators/String%20pattern%20replacement/examples/ds_1.json
https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/String%20operators/String%20pattern%20replacement/examples/ex_1.json
https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/String%20operators/String%20pattern%20replacement/examples/ex_2.json

4 A hello! hi!

String pattern location: instr

Syntax

instr (op, pattern, start, occurrence)

Input parameters

op the operand

pattern the string-pattern to be searched

start the position in the input string of the character from
which the search starts

occurrence the occurrence of the pattern to search

Examplesof valid syntaxes

instr (DS_1, “ab”, 2 , 3)
instr (DS_1, “ab”, 2)
instr (DS_1, “ab”, _ , 2)
instr (DS_1, “ab”)

Semantics for scalar operations

The operator returns the position in the input string of a specified string (pattern). The search starts from the start*th
character of the input string and finds the nth occurrence of the pattern, returning the position of its first character. If
*start is omitted, the search starts from the 1st position. If nth occurrence is omitted, the value is 1. If the nth
occurrence of the string-pattern after the start th character is not found in the input string, the returned value is 0. For
example:

instr ("abcde", "c") gives 3
instr ("abcdecfrxcwsd", "c", _ , 3) gives 10
instr ("abcdecfrxcwsd", "c", 5 , 3) gives 0

Input parameters type

op

dataset { measure<string> _+ }
| component<string>
| string

pattern

component<string>
| string

start

component < integer [value >= 1] >
| integer [value >= 1]

occurrence

component < integer [value >= 1] >
| integer [value >= 1]

Reference Manual

147

Result type

result

dataset { measure<integer[value >= 0]> int_var }
| component<integer[value >= 0]>
| integer[value >= 0]

Additional Constraints

The second parameter (pattern) cannot be omitted. For operations at Data Set level, the input Data Set must have
exactly one string type Measure.

Behaviour

As for the invocations at Data Set level, the operator has the behaviour of the “Operators applicable on one Scalar
Value or Data Set or Data Set Component”, as for the invocations at Component or Scalar level, the operator has the
behaviour of the “Operators applicable on more than two Scalar Values or Data Set Components”, (see the section
“Typical behaviours of the ML Operators”). If op is a Data Set then instr returns a dataset with a single measure
int_var of type integer.

Examples

Given the operand datasets DS_1 and DS_2:

Input DS_1 (see structure)

Id_1 Id_2 Me_1

1 A hello world

2 A say hello

3 A he

4 A hi, hello!

Input DS_2 (see structure)

Id_1 Id_2 Me_1 Me_2

1 A hello world

2 B hi

Example 1

DS_r:= instr(DS_1,"hello");

results in (see structure):

DS_r

Id_1 Id_2 int_var

1 A 1

2 A 5

3 A 0

4 A 5

Example 2

DS_r := DS_1[calc Me_2:=instr(Me_1,"hello")];

Reference Manual

148

https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/String%20operators/String%20pattern%20location/examples/ds_1.json
https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/String%20operators/String%20pattern%20location/examples/ds_2.json
https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/String%20operators/String%20pattern%20location/examples/ex_1.json

results in (see structure):

DS_r

Id_1 Id_2 Me_1 Me_2

1 A hello world 1

2 A say hello 5

3 A he 0

4 A hi, hello! 5

Example 3

DS_r := DS_2 [calc Me_10:= instr(Me_1, "o"), Me_20:=instr(Me_2, "o")];

results in (see structure):

DS_r

Id_1 Id_2 Me_1 Me_2 Me_10 Me_20

1 A hello world 5 2

2 B hi 0

Example 4

Applying the instr operator at Data Set level to a multi Measure Data Set:

DS_r := instr(DS_2, “o”) would give error because DS_2 has more than one Measure.

String length: length

Syntax

length (op)

Input parameters

op the operand

Examples of valid syntaxes

length("Hello, World!")
length(DS_1)

Semantics for scalar operations

Returns the length of a string. For example:

length("Hello, World!") gives 13
length("") gives 0

Input parameters type

op

Reference Manual

149

https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/String%20operators/String%20pattern%20location/examples/ex_2.json
https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/String%20operators/String%20pattern%20location/examples/ex_3.json

dataset { measure<string> _+ }
| component<string>
| string

Result type

result

dataset { measure<integer[value >= 0]> int_var }
| component<integer[value >= 0]>
| integer[value >= 0]

Additional Constraints

For operations at Data Set level, the input Data Set must have exactly one string type Measure.

Behaviour

The operator has the behaviour of the “Operators changing the data type” (see the section “Typical behaviours of the
ML Operators”). If op is a Data Set then length returns a dataset with a single measure int_var of type integer.

Examples

Given the operand dataset DS_1:

Input DS_1 (see structure)

Id_1 Id_2 Me_1

1 A hello

2 B

Input DS_2 (see structure)

Id_1 Id_2 Me_1 Me_2

1 A hello world

2 B hi

Example 1

DS_r := length(DS_1);

results in (see structure):

DS_r

Id_1 Id_2 int_var

1 A 5

2 B

Example 2

DS_r:= DS_1[calc Me_2:=length(Me_1)];

results in (see structure):

DS_r

Id_1 Id_2 Me_1 Me_2

Reference Manual

150

https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/String%20operators/String%20length/examples/ds_1.json
https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/String%20operators/String%20length/examples/ds_2.json
https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/String%20operators/String%20length/examples/ex_1.json
https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/String%20operators/String%20length/examples/ex_2.json

1 A hello 5

2 B

Example 3

DS_r := DS_2 [calc Me_10:= length(Me_1), Me_20:=length(Me_2)];

results in (see structure):

DS_r

Id_1 Id_2 Me_1 Me_2 Me_10 Me_20

1 A hello world 5 5

2 B hi 2

Example 4

length operator applied at Data Set level to a multi Measure Data Set:

DS_r := length(DS_2)

would give error because DS_2 has more than one Measure.

VTL-ML - Numeric Operators

Unary Plus: +

Syntax

+ op

Input parameters

op the operand

Examples of valid syntaxes

+ DS_1
+ 3

Semantics for scalar operations

The operator + returns the operand unchanged. For example:

+3 gives 3
+(-5) gives -5

Input parameters type

op:

dataset { measure<number> _+ }
| component<number>
| number

Reference Manual

151

https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/String%20operators/String%20length/examples/ex_3.json

Result type

result:

dataset { measure<number> _+ }
| component<number>
| number

Additional Constraints

None.

Behaviour

The operator has the behaviour of the “Operators applicable on one Scalar Value or Data Set or Data Set
Component” (see the section “Typical behaviours of the ML Operators”). According to the general rules about data
types, the operator can be applied also on sub-types of number, that is the type integer. If the type of the operand is
integer then the result has type integer. If the type of the operand is number then the result has type number.

Examples

Given the operand Data Set DS_1:

Input DS_1 (see structure)

Id_1 Id_2 Me_1 Me_2

10 A 1.0 5

10 B 2.3 10

11 A 3.2 12

Example 1

DS_r := + DS_1;

results in (see structure):

DS_r

Id_1 Id_2 Me_1 Me_2

10 A 1.0 5

10 B 2.3 10

11 A 3.2 12

Example 2

DS_r := DS_1 [calc Me_3 := + Me_1];

results in (see structure):

DS_r

Id_1 Id_2 Me_1 Me_2 Me_3

10 A 1.0 5 1.0

10 B 2.3 10 2.3

11 A 3.2 12 3.2

Reference Manual

152

https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Numeric%20operators/Unary%20plus/examples/ds_1.json
https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Numeric%20operators/Unary%20plus/examples/ex_1.json
https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Numeric%20operators/Unary%20plus/examples/ex_2.json

Unary Minus: -

Syntax

- op

Input parameters

op the operand

Examples of valid syntaxes

-DS_1
-3

Semantics for scalar operations

The operator - inverts the sign of op. For example:

-3 gives -3
-(-5) gives 5

Input parameters type

op:

dataset { measure<number> _+ }
| component<number>
| number

Result type

result:

dataset { measure<number> _+ }
| component<number>
| number

Additional Constraints

None.

Behaviour

The operator has the behaviour of the “Operators applicable on one Scalar Value or Data Set or Data Set
Component” (see the section “Typical behaviours of the ML Operators”). According to the general rules about data
types, the operator can be applied also on sub-types of number, that is the type integer. If the type of the operand is
integer then the result has type integer. If the type of the operand is number then the result has type number.

Examples

Given the operand Data Set DS_1:

Input DS_1 (see structure)

Id_1 Id_2 Me_1 Me_2

10 A 1 5.0

10 B 2 10.0

11 A 3 12.0

Reference Manual

153

https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Numeric%20operators/Unary%20minus/examples/ds_1.json

Example 1

DS_r := - DS_1;

results in (see structure):

DS_r

Id_1 Id_2 Me_1 Me_2

10 A -1 -5.0

10 B -2 -10.0

11 A -3 -12.0

Example 2

DS_r := DS_1 [calc Me_3 := - Me_1];

results in (see structure):

DS_r

Id_1 Id_2 Me_1 Me_2 Me_3

10 A 1 5.0 -1

10 B 2 10.0 -2

11 A 3 12.0 -3

Addition: +

Syntax

op1 + op2

Input parameters

op1 the first addendum

op2 the second addendum

examples of valid syntaxes

DS_1 + DS_2
3 + 5

Semantics for scalar operations

The operator addition returns the sum of two numbers. For example:

3 + 5 gives 8

Input parameters type

op1, op2

dataset { measure<number> _+ }
| component<number>
| number

Reference Manual

154

https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Numeric%20operators/Unary%20minus/examples/ex_1.json
https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Numeric%20operators/Unary%20minus/examples/ex_2.json

Result type

result

dataset { measure<number> _+ }
| component<number>
| number

Additional Constraints

None.

Behaviour

The operator has the behaviour of the “Operators applicable on two Scalar Values or Data Sets or Data Set
Components” (see the section “Typical behaviours of the ML Operators”). According to the general rules about data
types, the operator can be applied also on sub-types of number, that is the type integer. If the type of both operands
is integer then the result has type integer. If one of the operands is of type number, then the other operand is
implicitly cast to number and therefore the result has type number.

Examples

Given the operand datasets DS_1 and DS_2:

Input DS_1 (see structure)

Id_1 Id_2 Me_1 Me_2

10 A 5 5.0

10 B 2 10.5

11 A 3 12.2

11 B 4 20.3

Input DS_2 (see structure)

Id_1 Id_2 Me_1 Me_2

10 A 10 3.0

10 C 11 6.2

11 B 6 7.0

Example 1

DS_r := DS_1 + DS_2;

results in (see structure):

DS_r

Id_1 Id_2 Me_1 Me_2

10 A 15 8.0

11 B 10 27.3

Example 2

DS_r := DS_1 + 3;

results in (see structure):

Reference Manual

155

https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Numeric%20operators/Addition/examples/ds_1.json
https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Numeric%20operators/Addition/examples/ds_2.json
https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Numeric%20operators/Addition/examples/ex_1.json
https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Numeric%20operators/Addition/examples/ex_2.json

DS_r

Id_1 Id_2 Me_1 Me_2

10 A 8 8.0

10 B 5 13.5

11 A 6 15.2

11 B 7 23.3

Example 3

DS_r := DS_1 [calc Me_3 := Me_1 + 3.0];

results in (see structure):

DS_r

Id_1 Id_2 Me_1 Me_2 Me_3

10 A 5 5.0 8.0

10 B 2 10.5 5.0

11 A 3 12.2 6.0

11 B 4 20.3 7.0

Subtraction: -

Syntax

op1 - op2

Input parameters

op1 the minuend

op2 the subtrahend

Examples of valid syntaxes

DS_1 - DS_2
3 - 5

Semantics for scalar operations

The operator subtraction returns the difference of two numbers. For example:

3 - 5 gives -2

Input parameters type

op1, op2

dataset { measure<number> _+ }
| component<number>
| number

Reference Manual

156

https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Numeric%20operators/Addition/examples/ex_3.json

Result type

result

dataset { measure<number> _+ }
| component<number>
| number

Additional Constraints

None.

Behaviour

The operator has the behaviour of the “Operators applicable on two Scalar Values or Data Sets or Data Set
Components” (see the section “Typical behaviours of the ML Operators”). According to the general rules about data
types, the operator can be applied also on sub-types of number, that is the type integer. If the type of both operands
is integer then the result has type integer. If one of the operands is of type number, then the other operand is
implicitly cast to number and therefore the result has type number.

Examples

Given the operand datasets DS_1 and DS_2:

Input DS_1 (see structure)

Id_1 Id_2 Me_1 Me_2

10 A 5 5.0

10 B 2 10.5

11 A 3 12.2

11 B 4 20.3

Input DS_2 (see structure)

Id_1 Id_2 Me_1 Me_2

10 A 10 3.0

10 C 11 6.2

11 B 6 7.0

Example 1

DS_r := DS_1 - DS_2;

results in (see structure):

DS_r

Id_1 Id_2 Me_1 Me_2

10 A -5 2.0

11 B -2 13.3

Example 2

DS_r := DS_1 - 3;

results in (see structure):

Reference Manual

157

https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Numeric%20operators/Subtraction/examples/ds_1.json
https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Numeric%20operators/Subtraction/examples/ds_2.json
https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Numeric%20operators/Subtraction/examples/ex_1.json
https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Numeric%20operators/Subtraction/examples/ex_2.json

DS_r

Id_1 Id_2 Me_1 Me_2

10 A 2 2.0

10 B -1 7.5

11 A 0 9.2

11 B 1 17.3

Example 3

DS_r := DS_1 [calc Me_3 := Me_1 - 3];

results in (see structure):

DS_r

Id_1 Id_2 Me_1 Me_2 Me_3

10 A 5 5.0 2

10 B 2 10.5 -1

11 A 3 12.2 0

11 B 4 20.3 1

Multiplication: *

Syntax

op1 * op2

Input parameters

op1 the multiplicand

op2 the multiplier

Examples of valid syntaxes

DS_1 * DS_2
3 * 5

Semantics for scalar operations

The operator addition returns the product of two numbers. For example:

3 * 5 gives 15

Input parameters type

op1, op2

dataset { measure<number> _+ }
| component<number>
| number

Reference Manual

158

https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Numeric%20operators/Subtraction/examples/ex_3.json

Result type

result

dataset { measure<number> _+ }
| component<number>
| number

Additional Constraints

None.

Behavior

The operator has the behaviour of the “Operators applicable on two Scalar Values or Data Sets or Data Set
Components” (see the section “Typical behaviours of the ML Operators”). According to the general rules about data
types, the operator can be applied also on sub-types of number, that is the type integer. If the type of both operands
is integer then the result has type integer. If one of the operands is of type number, then the other operand is
implicitly cast to number and therefore the result has type number.

Examples

Given the operand datasets DS_1 and DS_2:

Input DS_1 (see structure)

Id_1 Id_2 Me_1 Me_2

10 A 100 7.6

10 B 10 12.3

11 A 20 25.0

11 B 2 20.0

Input DS_2 (see structure)

Id_1 Id_2 Me_1 Me_2

10 A 1 2.0

10 C 5 3.0

11 B 2 1.0

Example 1

DS_r := DS_1 * DS_2;

results in (see structure):

DS_r

Id_1 Id_2 Me_1 Me_2

10 A 100 15.2

11 B 4 20.0

Example 2

DS_r := DS_1 * -3;

results in (see structure):

Reference Manual

159

https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Numeric%20operators/Multiplication/examples/ds_1.json
https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Numeric%20operators/Multiplication/examples/ds_2.json
https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Numeric%20operators/Multiplication/examples/ex_1.json
https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Numeric%20operators/Multiplication/examples/ex_2.json

DS_r

Id_1 Id_2 Me_1 Me_2

10 A -300 -22.8

10 B -30 -36.9

11 A -60 -75.0

11 B -6 -60.0

Example 3

DS_r := DS_1 [calc Me_3 := Me_1 * Me_2];

results in (see structure):

DS_r

Id_1 Id_2 Me_1 Me_2 Me_3

10 A 100 7.6 760.0

10 B 10 12.3 123.0

11 A 20 25.0 500.0

11 B 2 20.0 40.0

Division: /

Syntax

op1 / op2

Input parameters

op1 the dividend

op2 the divisor

Examples of valid syntaxes

DS_1 / DS_2
3 / 5

Semantics for scalar operations

The operator addition divides two numbers. For example: | 3 / 5 gives 0.6

Input parameters type

op1, op2

dataset { measure<number> _+ }
| component<number>
| number

Result type

result

Reference Manual

160

https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Numeric%20operators/Multiplication/examples/ex_3.json

dataset { measure<number> _+ }
| component<number>
| number

Additional Constraints

None.

Behavior

The operator has the behaviour of the “Operators applicable on two Scalar Values or Data Sets or Data Set
Components” (see the section “Typical behaviours of the ML Operators”). According to the general rules about data
types, the operator can be applied also on sub-types of number, that is the type integer. The result has type number.

If op2 is 0 then the operation generates a run-time error.

Examples

Given the operand datasets DS_1, DS_2 and DS_3:

Input DS_1 (see structure)

Id_1 Id_2 Me_1

10 A 7.6

10 B 12.3

11 A 25.0

11 B 20.0

Input DS_2 (see structure)

Id_1 Id_2 Me_1

10 A 2.0

10 C 3.0

11 B 1.0

Input DS_3 (see structure)

Id_1 Id_2 Me_1 Me_2

10 A 100 7.6

10 B 10 12.3

11 A 20 25.0

11 B 2 20.0

Example 1

DS_r := DS_1 / DS_2;

results in (see structure):

DS_r

Id_1 Id_2 Me_1

10 A 3.8

11 B 20.0

Reference Manual

161

https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Numeric%20operators/Division/examples/ds_1.json
https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Numeric%20operators/Division/examples/ds_2.json
https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Numeric%20operators/Division/examples/ds_3.json
https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Numeric%20operators/Division/examples/ex_1.json

Example 2

DS_r := DS_1 / 10;

results in (see structure):

DS_r

Id_1 Id_2 Me_1

10 A 0.76

10 B 1.23

11 A 2.5

11 B 2.0

Example 3

DS_r := DS_3 [calc Me_3 := Me_2 / Me_1];

results in (see structure):

DS_r

Id_1 Id_2 Me_1 Me_2 Me_3

10 A 100 7.6 0.076

10 B 10 12.3 1.23

11 A 20 25.0 1.25

11 B 2 20.0 10.0

Modulo: mod

Syntax

mod (op1 , op2)

Input parameters

op1 the dividend

op2 the divisor

Examples of valid syntaxes

mod(DS_1, DS_2)
mod (DS_1, 5)
mod (5, DS_2)
mod (5, 2)

Semantics for scalar operations

The operator mod returns the remainder of op1 divided by op2. It returns op1 if divisor op2 is 0. For example: |
mod (5, 2) gives 1 | mod (5, -2) gives -1 | mod (8, 2) gives 0 | mod (9, 0) gives 9

Reference Manual

162

https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Numeric%20operators/Division/examples/ex_2.json
https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Numeric%20operators/Division/examples/ex_3.json

Input parameters type

op1, op2

dataset { measure<number> _+ }
| component<number>
| number

Result type

result

dataset { measure<number> _+ }
| component<number>
| number

Additional Constraints

None.

Behavior

The operator has the behaviour of the “Operators applicable on two Scalar Values or Data Sets or Data Set
Components” (see the section “Typical behaviours of the ML Operators”).

According to the general rules about data types, the operator can be applied also on sub-types of number, that is the
type integer. If the type of both operands is integer then the result has type integer. If one of the operands is of type
number, then the other operand is implicitly cast to number and therefore the result has type number.

Examples

Given the operand datasets DS_1 and DS_2:

Input DS_1 (see structure)

Id_1 Id_2 Me_1 Me_2

10 A 100 0.7545

10 B 10 18.45

11 A 20 1.87

11 B 9 20.3

Input DS_2 (see structure)

Id_1 Id_2 Me_1 Me_2

10 A 1 0.25

10 C 5 3.0

11 B 2 2.0

Example 1

DS_r := mod (DS_1, DS_2);

results in (see structure):

DS_r

Id_1 Id_2 Me_1 Me_2

10 A 0 0.0045

11 B 1 0.3

Reference Manual

163

https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Numeric%20operators/Modulo/examples/ds_1.json
https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Numeric%20operators/Modulo/examples/ds_2.json
https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Numeric%20operators/Modulo/examples/ex_1.json

Example 2

DS_r := mod (DS_1, 15);

results in (see structure):

DS_r

Id_1 Id_2 Me_1 Me_2

10 A 10 0.7545

10 B 10 3.45

11 A 5 1.87

11 B 9 5.3

Example 3

DS_r := DS_1[calc Me_3 := mod(Me_1, 3.0)];

results in (see structure):

DS_r

Id_1 Id_2 Me_1 Me_2 Me_3

10 A 100 0.7545 1.0

10 B 10 18.45 1.0

11 A 20 1.87 2.0

11 B 9 20.3 0.0

Rounding: round

Syntax

round (op , numDigit)

Input parameters

op the operand

numDigit the number of positions to round to

Examples of valid syntaxes

round (DS_1 , 2)
round (DS_2)
round (3.14159 , 2)
round (3.14159 , _)

Reference Manual

164

https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Numeric%20operators/Modulo/examples/ex_2.json
https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Numeric%20operators/Modulo/examples/ex_3.json

Semantics for scalar operations

The operator round rounds the operand to a number of positions at the right of the decimal point equal to the
numDigit parameter. The decimal point is assumed to be at position 0. If numDigit is negative, the rounding happens
at the left of the decimal point. The rounding operation leaves the numDigit position unchanged if the numDigit*+1
position is between 0 and 4, otherwise it adds 1 to the number that is in the *numDigit position. All the positions
greater than numDigit are set to 0. The basic scalar type of the result is integer if numDigit is omitted, number
otherwise. For example:

round (3.14159, 2) gives 3.14
round (3.14159, 4) gives 3.1416
round (12345.6, 0) gives 12346.0
round (12345.6) gives 12346
round (12345.6, _) gives 12346
round (12345.6, -1) gives 12350.0

Input parameters type

op

dataset { measure<number> _+ }
| component<number>
| number

numDigit

component<integer>
| integer

Result type

result

dataset { measure<number> _+ }
| component<number>
| number

Additional Constraints

None.

Behavior

As for the invocations at Data Set level, the operator has the behaviour of the “Operators applicable on one Scalar
Value or Data Set or Data Set Component”. As for the invocations at Component or Scalar level, the operator has
the behaviour of the “Operators applicable on two Scalar Values or Data Sets or Data Set Components”, (see the
section “Typical behaviours of the ML Operators”).

Examples

Given the operand dataset DS_1:

Input DS_1 (see structure)

Id_1 Id_2 Me_1 Me_2

10 A 7.5 5.9

10 B 7.1 5.5

11 A 36.2 17.7

11 B 44.5 24.3

Reference Manual

165

https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Numeric%20operators/Rounding/examples/ds_1.json

Example 1

DS_r := round(DS_1, 0);

results in (see structure):

DS_r

Id_1 Id_2 Me_1 Me_2

10 A 8.0 6.0

10 B 7.0 6.0

11 A 36.0 18.0

11 B 45.0 24.0

Example 2

DS_r := DS_1 [calc Me_10:= round(Me_1)];

results in (see structure):

DS_r

Id_1 Id_2 Me_1 Me_2 Me_10

10 A 7.5 5.9 8

10 B 7.1 5.5 7

11 A 36.2 17.7 36

11 B 44.5 24.3 45

Example 3

DS_r := DS_1 [calc Me_20:= round(Me_1 , -1)];

results in (see structure):

DS_r

Id_1 Id_2 Me_1 Me_2 Me_20

10 A 7.5 5.9 10

10 B 7.1 5.5 10

11 A 36.2 17.7 40

11 B 44.5 24.3 40

Truncation: trunc

Syntax

trunc (op , numDigit)

Input parameters

Reference Manual

166

https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Numeric%20operators/Rounding/examples/ex_1.json
https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Numeric%20operators/Rounding/examples/ex_2.json
https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Numeric%20operators/Rounding/examples/ex_3.json

op the operand

numDigit the number of position from which to trunc

Examples of valid syntaxes

trunc (DS_1 , 2)
trunc (DS_2)
trunc (3.14159 , 2)
trunc (3.14159 , _)

Semantics for scalar operations

The operator trunc truncates the operand to a number of positions at the right of the decimal point equal to the
numDigit parameter. The decimal point is assumed to be at position 0. If numDigit is negative, the truncation
happens at the left of the decimal point. The truncation operation leaves the numDigit position unchanged. All the
positions greater than numDigit are eliminated. The basic scalar type of the result is integer if numDigit is omitted,
number otherwise. For example:

trunc (3.14159, 2) gives 3.14
trunc (3.14159, 4) gives 3.1415
trunc (12345.6, 0) gives 12345.0
trunc (12345.6) gives 12345
trunc (12345.6, _) gives 12345
trunc(12345.6, -1) gives 12340.0

Input parameters type

op

dataset { measure<number> _+ }
| component<number>
| number

numDigit

component<integer>
| integer

Result type

result

dataset { measure<number> _+ }
| component<number>
| number

Additional Constraints

None.

Behavior

As for the invocations at Data Set level, the operator has the behaviour of the “Operators applicable on one Scalar
Value or Data Set or Data Set Component”, as for the invocations at Component or Scalar level, the operator has the
behaviour of the “Operators applicable on two Scalar Values or Data Sets or Data Set Components”, (see the section
“Typical behaviours of the ML Operators”).

Examples

Given the operand dataset DS_1:

Input DS_1 (see structure)

Reference Manual

167

https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Numeric%20operators/Truncation/examples/ds_1.json

Id_1 Id_2 Me_1 Me_2

10 A 7.5 5.9

10 B 7.1 5.5

11 A 36.2 17.7

11 B 44.5 24.3

Example 1

DS_r := trunc(DS_1, 0);

results in (see structure):

DS_r

Id_1 Id_2 Me_1 Me_2

10 A 7.0 5.0

10 B 7.0 5.0

11 A 36.0 17.0

11 B 44.0 24.0

Example 2

DS_r := DS_1[calc Me_10:= trunc(Me_1)];

results in (see structure):

DS_r

Id_1 Id_2 Me_1 Me_2 Me_10

10 A 7.5 5.9 7

10 B 7.1 5.5 7

11 A 36.2 17.7 36

11 B 44.5 24.3 44

Example 3

DS_r := DS_1[calc Me_20:= trunc(Me_1 , -1)];

results in (see structure):

DS_r

Id_1 Id_2 Me_1 Me_2 Me_20

10 A 7.5 5.9 0.0

10 B 7.1 5.5 0.0

11 A 36.2 17.7 30.0

11 B 44.5 24.3 40.0

Reference Manual

168

https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Numeric%20operators/Truncation/examples/ex_1.json
https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Numeric%20operators/Truncation/examples/ex_2.json
https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Numeric%20operators/Truncation/examples/ex_3.json

Ceiling: ceil

Syntax

ceil (op)

Input parameters

op the operand

Examples of valid syntaxes

ceil (DS_1)
ceil (3.14159)

Semantics for scalar operations

The operator ceil returns the smallest integer greater than or equal to op. For example:

ceil(3.14159) gives 4
ceil(15) gives 15
ceil(-3.1415) gives -3
ceil(-0.1415) gives 0

Input parameters type

op

dataset { measure<number> _+ }
| component<number>
| number

Result type

result

dataset { measure<integer> _+ }
| component<integer>
| integer

Additional Constraints

None.

Behaviour

The operator has the behaviour of the “Operators applicable on one Scalar Value or Data Set or Data Set
Component” (see the section “Typical behaviours of the ML Operators”).

Examples

Given the operand dataset DS_1:

Input DS_1 (see structure)

Id_1 Id_2 Me_1 Me_2

10 A 7.0 5.9

10 B 0.1 -5.0

11 A -32.2 17.7

11 B 44.5 -0.3

Reference Manual

169

https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Numeric%20operators/Ceiling/examples/ds_1.json

Example 1

DS_r := ceil (DS_1);

results in (see structure):

DS_r

Id_1 Id_2 Me_1 Me_2

10 A 7 6

10 B 1 -5

11 A -32 18

11 B 45 0

Example 2

DS_r := DS_1 [calc Me_10 := ceil (Me_1)];

results in (see structure):

DS_r

Id_1 Id_2 Me_1 Me_2 Me_10

10 A 7.0 5.9 7

10 B 0.1 -5.0 1

11 A -32.2 17.7 -32

11 B 44.5 -0.3 45

Floor: floor

Syntax

floor (op)

Input parameters

op the operand

Examples of valid syntaxes

floor (DS_1)
floor (3.14159)

Semantics for scalar operations

The operator floor returns the greatest integer which is smaller than or equal to op. For example:

floor(3.1415) gives 3
floor(15) gives 15
floor(-3.1415) gives -4
floor(-0.1415) gives -1

Reference Manual

170

https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Numeric%20operators/Ceiling/examples/ex_1.json
https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Numeric%20operators/Ceiling/examples/ex_2.json

Input parameters type

op

dataset { measure<number> _+ }
| component<number>
| number

Result type

result

dataset { measure<integer> _+ }
| component<integer>
| integer

Additional Constraints

None.

Behaviour

The operator has the behaviour of the “Operators applicable on one Scalar Value or Data Set or Data Set
Component” (see the section “Typical behaviours of the ML Operators”).

Examples

Given the operand dataset DS_1:

Input DS_1 (see structure)

Id_1 Id_2 Me_1 Me_2

10 A 7.0 5.9

10 B 0.1 -5.0

11 A -32.2 17.7

11 B 44.5 -0.3

Example 1

DS_r := floor (DS_1);

results in (see structure):

DS_r

Id_1 Id_2 Me_1 Me_2

10 A 7 5

10 B 0 -5

11 A -33 17

11 B 44 -1

Example 2

DS_r := DS_1 [calc Me_10 := floor (Me_1)];

results in (see structure):

Reference Manual

171

https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Numeric%20operators/Floor/examples/ds_1.json
https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Numeric%20operators/Floor/examples/ex_1.json
https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Numeric%20operators/Floor/examples/ex_2.json

DS_r

Id_1 Id_2 Me_1 Me_2 Me_10

10 A 7.0 5.9 7

10 B 0.1 -5.0 0

11 A -32.2 17.7 -33

11 B 44.5 -0.3 44

Absolute value: abs

Syntax

abs (op)

Input parameters

op the operand

Examples of valid syntaxes

abs (DS_1)
abs (-5)

Semantics for scalar operations

The operator abs calculates the absolute value of a number. For example:

abs (-5.49) gives 5.49
abs (5.49) gives 5.49

Input parameters type

op

dataset { measure<number> _+ }
| component<number>
| number

Result type

result

dataset { measure<number [value >= 0]> _+ }
| component<number [value >= 0]>
| number [value >= 0]

Additional Constraints

None.

Behavior

The operator has the behaviour of the “Operators applicable on one Scalar Value or Data Set or Data Set
Component” (see the section “Typical behaviours of the ML Operators”).

Examples

Given the operand dataset DS_1:

Reference Manual

172

Input DS_1 (see structure)

Id_1 Id_2 Me_1 Me_2

10 A 0.484183 0.7545

10 B -0.515817 -13.45

11 A -1.000000 187.0

Example 1

DS_r := abs (DS_1);

results in (see structure):

DS_r

Id_1 Id_2 Me_1 Me_2

10 A 0.484183 0.7545

10 B 0.515817 13.45

11 A 1.000000 187

Example 2

DS_r := DS_1 [calc Me_10 := abs(Me_1)];

results in (see structure):

DS_r

Id_1 Id_2 Me_1 Me_2 Me_10

10 A 0.484183 0.7545 0.484183

10 B -0.515817 -13.45 0.515817

11 A -1.000000 187.0 1.000000

Exponential: exp

Syntax

exp (op)

Input parameters

op the operand

Examples of valid syntaxes

exp (DS_1)
exp (5)

Semantics for scalar operations

The operator exp returns e (base of the natural logarithm) raised to the op-th power. For example:

exp (5) gives 148.41315...

Reference Manual

173

https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Numeric%20operators/Absolute%20value/examples/ds_1.json
https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Numeric%20operators/Absolute%20value/examples/ex_1.json
https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Numeric%20operators/Absolute%20value/examples/ex_2.json

exp (1) gives 2.71828... (the number e)
exp (0) gives 1.0
exp (-1) gives 0.36787... (the number 1/e)

Input parameters type

op

dataset { measure<number> _+ }
| component<number>
| number

Result type

result

dataset { measure<number[value > 0]> _+ }
| component<number [value > 0]>
| number[value > 0]

Additional Constraints

None.

Behavior

The operator has the behaviour of the “Operators applicable on one Scalar Value or Data Set or Data Set
Component” (see the section “Typical behaviours of the ML Operators”).

Examples

Given the operand dataset DS_1:

Input DS_1 (see structure)

Id_1 Id_2 Me_1 Me_2

10 A 5 0.7545

10 B 8 13.45

11 A 2 1.87

Example 1

DS_r := exp(DS_1);

results in (see structure):

DS_r

Id_1 Id_2 Me_1 Me_2

10 A 148.413 2.126547

10 B 2980.95 693842.3

11 A 7.38905 6.488296

Example 2

DS_r := DS_1 [calc Me_1 := exp (Me_1)];

results in (see structure):

Reference Manual

174

https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Numeric%20operators/Exponential/examples/ds_1.json
https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Numeric%20operators/Exponential/examples/ex_1.json
https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Numeric%20operators/Exponential/examples/ex_2.json

DS_r

Id_1 Id_2 Me_1 Me_2

10 A 148.4131591025766 0.7545

10 B 2980.9579870417283 13.45

11 A 7.38905609893065 1.87

Natural logarithm: ln

Syntax

ln (op)

Input parameters

op the operand

Examples of valid syntaxes

ln (DS_1)
ln (148)

Semantics for scalar operations

The operator ln calculates the natural logarithm of a number. For example:

ln (148) gives 4.997...
ln (e) gives 1.0
ln (1) gives 0.0
ln (0.5) gives -0.693...

Input parameters type

op

dataset { measure<number [value > 0] > _+ }
| component<number [value > 0] >
| number [value > 0]

Result type

result

dataset { measure<number> _+ }
| component<number>
| number

Additional Constraints

None.

Behaviour

The operator has the behaviour of the “Operators applicable on one Scalar Value or Data Set or Data Set
Component” (see the section “Typical behaviours of the ML Operators”).

Examples

Given the operand dataset DS_1:

Reference Manual

175

Input DS_1 (see structure)

Id_1 Id_2 Me_1 Me_2

10 A 148.413 0.7545

10 B 2980.95 13.45

11 A 7.38905 1.87

Example 1

DS_r := ln(DS_1);

results in (see structure):

DS_r

Id_1 Id_2 Me_1 Me_2

10 A 5.0 -0.2817

10 B 8.0 2.598979

11 A 2.0 0.625938

Example 2

DS_r := DS_1 [calc Me_2 := ln (Me_1)];

results in (see structure):

DS_r

Id_1 Id_2 Me_1 Me_2

10 A 148.413 5.0

10 B 2980.95 8.0

11 A 7.38905 2.0

Power: power

Syntax

power (base , exponent)

Input parameters

base the operand

exponent the exponent of the power

Examples of valid syntaxes

power (DS_1, 2)
power (5, 2)

Semantics for scalar operations

The operator power raises a number (the base) to another one (the exponent). For example:

Reference Manual

176

https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Numeric%20operators/Natural%20logarithm/examples/ds_1.json
https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Numeric%20operators/Natural%20logarithm/examples/ex_1.json
https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Numeric%20operators/Natural%20logarithm/examples/ex_2.json

power (5, 2) gives 25
power (5, 1) gives 5
power (5, 0) gives 1
power (5, -1) gives 0.2
power (-5, 3) gives -125

Input parameters type

base

dataset { measure<number> _+ }
| component<number>
| number

exponent

component<number>
| number

Result type

result

dataset { measure<number> _+ }
| component<number>
| number

Additional Constraints

None.

Behaviour

As for the invocations at Data Set level, the operator has the behaviour of the “Operators applicable on one Scalar
Value or Data Set or Data Set Component”. As for the invocations at Component or Scalar level, the operator has
the behaviour of the “Operators applicable on two Scalar Values or Data Sets or Data Set Components”, (see the
section “Typical behaviours of the ML Operators”).

Examples

Given the operand dataset DS_1:

Input DS_1 (see structure)

Id_1 Id_2 Me_1 Me_2

10 A 3 0.7545

10 B 4 13.45

11 A 5 1.87

Example 1

DS_r := power(DS_1, 2);

results in (see structure):

DS_r

Id_1 Id_2 Me_1 Me_2

10 A 9.0 0.56927

10 B 16.0 180.9025

Reference Manual

177

https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Numeric%20operators/Power/examples/ds_1.json
https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Numeric%20operators/Power/examples/ex_1.json

11 A 25.0 3.4969

Example 2

DS_r := DS_1[calc Me_1 := power(Me_1, 2)];

results in (see structure):

DS_r

Id_1 Id_2 Me_1 Me_2

10 A 9.0 0.7545

10 B 16.0 13.45

11 A 25.0 1.87

Logarithm: log

Syntax

log (op , num)

Input parameters

op the base of the logarithm

num the number to which the logarithm is applied

Examples of valid syntaxes

log (DS_1, 2)
log (1024, 2)

Semantics for scalar operations

The operator log calculates the logarithm of num base op. For example:

log (1024, 2) gives 10
log (1024, 10) gives 3.01

Input parameters type

op

dataset { measure<number [value > 1] > _+ }
| component<number [value > 1] >
| number [value > 1]

num

component<integer [value > 0]>
| integer [value > 0]

Result type

result

dataset { measure<number> _+ }
| component<number>
| number

Reference Manual

178

https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Numeric%20operators/Power/examples/ex_2.json

Additional Constraints

None.

Behavior

As for the invocations at Data Set level, the operator has the behaviour of the “Operators applicable on one Scalar
Value or Data Set or Data Set Component”. As for the invocations at Component or Scalar level, the operator has
the behaviour of the “Operators applicable on two Scalar Values or Data Sets or Data Set Components”, (see the
section “Typical behaviours of the ML Operators”).

Examples

Given the operand dataset DS_1:

Input DS_1 (see structure)

Id_1 Id_2 Me_1 Me_2

10 A 1024 0.7545

10 B 64 13.45

11 A 32 1.87

Example 1

DS_r := log (DS_1, 2);

results in (see structure):

DS_r

Id_1 Id_2 Me_1 Me_2

10 A 10.0 -0.4064071941354039

10 B 6.0 3.749534267669262

11 A 5.0 0.9030382701129122

Example 2

DS_r := DS_1 [calc Me_1 := log (Me_1, 2)];

results in (see structure):

DS_r

Id_1 Id_2 Me_1 Me_2

10 A 10.0 0.7545

10 B 6.0 13.45

11 A 5.0 1.87

Square root: sqrt

Syntax

sqrt (op)

Reference Manual

179

https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Numeric%20operators/Logarithm/examples/ds_1.json
https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Numeric%20operators/Logarithm/examples/ex_1.json
https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Numeric%20operators/Logarithm/examples/ex_2.json

Input parameters

op the operand

Examples of valid syntaxes

sqrt (DS_1)
sqrt (5)

Semantics for scalar operations

The operator sqrt calculates the square root of a number. For example:

sqrt (25) gives 5

Input parameters type

op

dataset { measure<number [value >= 0] > _+ }
| component<number [value >= 0] >
| number [value >= 0]

Result type

result

dataset { measure<number [value >= 0] > _+ }
| component<number [value >= 0] >
| number [value >= 0]

Additional Constraints

None.

Behaviour

The operator has the behaviour of the “Operators applicable on one Scalar Value or Data Set or Data Set
Component” (see the section “Typical behaviours of the ML Operators”). Some valid examples could be: sqrt (DS_1
), sqrt (5).

Examples

Given the operand dataset DS_1:

Input DS_1 (see structure)

Id_1 Id_2 Me_1 Me_2

10 A 16 1.5625

10 B 81 11.2225

11 A 64 52.5625

Example 1

DS_r := sqrt(DS_1);

results in (see structure):

DS_r

Reference Manual

180

https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Numeric%20operators/Square%20root/examples/ds_1.json
https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Numeric%20operators/Square%20root/examples/ex_1.json

Id_1 Id_2 Me_1 Me_2

10 A 4.0 1.25

10 B 9.0 3.35

11 A 8.0 7.25

Example 2

DS_r := DS_1 [calc Me_1 := sqrt (Me_1)];

results in (see structure):

DS_r

Id_1 Id_2 Me_1 Me_2

10 A 4.0 1.5625

10 B 9.0 11.2225

11 A 8.0 52.5625

Random: random

Syntax

random (seed , index)

Input parameters

seed the seed

index the index

Examples of valid syntaxes

random(15,12)
ds [calc r := random(col_1, 12)]
random(ds, 12);

Semantics for scalar operations

The operator generates a sequence number >= 0 and <1, based on seed parameter and returns

the number value corresponding to index.

Input parameters type

seed

dataset { measure<number> _+ }
| component<number>
| number

index

integer

Result type

result

Reference Manual

181

https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Numeric%20operators/Square%20root/examples/ex_2.json

dataset { measure<number> _+ }
| component<number[0-1] >
| number[0-1]

Additional Constraints

None.

Behaviour

The operator returns a random decimal number >= 0 and <1.

Examples

Given the operand dataset DS_1:

Input DS_1 (see structure)

Id_1 Id_2 Me_1

10 A 16.0

10 B 4.0

11 A 7.2

Example 1

DS_r := random(DS_1,5);

results in (see structure):

DS_r

Id_1 Id_2 Me_1

10 A 0.3582791

10 B 0.428819

11 A 0.715488

Example 2

DS_r := DS_1 [calc Me_2 := random(Me_1, 8)];

results in (see structure):

DS_r

Id_1 Id_2 Me_1 Me_2

10 A 16.0 0.7545341

10 B 4.0 0.3457166

11 A 7.2 0.5183224

Reference Manual

182

https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Numeric%20operators/Random/examples/ds_1.json
https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Numeric%20operators/Random/examples/ex_1.json
https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Numeric%20operators/Random/examples/ex_2.json

VTL-ML - Comparison Operators

Equal to: =

Syntax

left = right

Input parameters

left the left operand

right the right operand

Examples of valid syntaxes

DS_1 = DS_2

Semantics for scalar operations

The operator returns TRUE if the left is equal to right, FALSE otherwise.

For example: | 5 = 9 gives: FALSE | 5 = 5 gives: TRUE | “hello” = “hi” gives: FALSE

Input parameters type

left, right

dataset {measure<scalar>}
| component<scalar>
| scalar

Result type

result

dataset { measure<boolean> bool_var }
| component<boolean>
| boolean

Additional Constraints

Operands left and right must be of the same scalar type

Behaviour

The operator has the typical behaviour of the “Operators changing the data type” (see the section “Typical
behaviours of the ML Operators”).

Examples

Given the operand datasets DS_1:

Example 1

DS_r := DS_1 = 0.08;

results in (see structure):

DS_r

Reference Manual

183

https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Comparison%20operators/Equal%20to/examples/ex_1.json

Id_1 Id_2 Id_3 Id_4 bool_var

2012 B Total Total

2012 G Total Total False

2012 S Total Total False

2012 M Total Total False

2012 F Total Total True

2012 W Total Total True

Example 2

DS_r := DS_1 [calc Me_2 := Me_1 = 0.08];

results in (see structure):

DS_r

Id_1 Id_2 Id_3 Id_4 Me_1 Me_2

2012 B Total Total

2012 G Total Total 0.286 False

2012 S Total Total 0.064 False

2012 M Total Total 0.043 False

2012 F Total Total 0.08 True

2012 W Total Total 0.08 True

Not equal to: <>

Syntax

left <> right

Input parameters

left the left operand

right the right operand

Examples of valid syntaxes

DS_1 <> DS_2

Semantics for scalar operations

The operator returns FALSE if the left is equal to right, TRUE otherwise. For example:

5 <> 9 gives TRUE
5 <> 5 gives FALSE
“hello” <> “hi” gives TRUE

Input parameters type

left, right

Reference Manual

184

https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Comparison%20operators/Equal%20to/examples/ex_2.json

dataset {measure<scalar> _}
| component<scalar>
| scalar

Result type

result

dataset { measure<boolean> bool_var }
| component<boolean>
| boolean

Additional Constraints

Operands left and right must be of the same scalar type.

Behaviour

The operator has the typical behaviour of the “Operators changing the data type” (see the section “Typical
behaviours of the ML Operators”).

Examples

Given the operand datasets DS_1 and DS_2:

Input DS_1 (see structure)

Id_1 Id_2 Id_3 Id_4 Me_1

G Total Percentage Total 7.1

R Total Percentage Total

Input DS_2 (see structure)

Id_1 Id_2 Id_3 Id_4 Me_1

G Total Percentage Total 7.5

R Total Percentage Total 3

Example 1

DS_r := DS_1 <> DS_2;

results in (see structure):

DS_r

Id_1 Id_2 Id_3 Id_4 bool_var

G Total Percentage Total True

R Total Percentage Total

Example 2

DS_r := DS_1 [calc Me_2 := Me_1<>7.5];

results in (see structure):

DS_r

Id_1 Id_2 Id_3 Id_4 Me_1 Me_2

Reference Manual

185

https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Comparison%20operators/Not%20equal%20to/examples/ds_1.json
https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Comparison%20operators/Not%20equal%20to/examples/ds_2.json
https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Comparison%20operators/Not%20equal%20to/examples/ex_1.json
https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Comparison%20operators/Not%20equal%20to/examples/ex_2.json

G Total Percentage Total 7.1 True

R Total Percentage Total

Regarding example 1, note that due to the behaviour for NULL values, if the value for G` in the second operand had
also been NULL, then the result would still be NULL for Greece.

Greater than: > >=

Syntax

left { > | >= }¹ right

Input parameters

left the left operand part of the comparison

right the right operand part of the comparison

Examples of valid syntaxes

::

DS_1 > DS_2 DS_1 >= DS_2

Semantics for scalar operations

The operator > returns TRUE if left is greater than right, FALSE otherwise. The operator >= returns TRUE if left is
greater than or equal to right, FALSE otherwise. For example:

5 > 9 gives FALSE
5 >= 5 gives TRUE
"hello" > "hi" gives FALSE

Input parameters type

left, right

dataset {measure<scalar> _}
| component<scalar>
| scalar

Result type

result

dataset { measure<boolean> bool_var }
| component<boolean>
| boolean

Additional Constraints

Operands left and right must be of the same scalar type.

Behaviour

The operator has the typical behaviour of the “Operators changing the data type” (see the section “Typical
behaviours of the ML Operators”).

Examples

Given the operand datasets DS_1, DS_2 and DS_3:

Input DS_1 (see structure)

Reference Manual

186

https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Comparison%20operators/Greater%20than/examples/ds_1.json

Id_1 Id_2 Id_3 Id_4 Id_5 Me_1

2 G 2011 Total Percentage

2 R 2011 Total Percentage 12.2

2 F 2011 Total Percentage 29.5

Input DS_2 (see structure)

Id_1 Id_2 Id_3 Id_4 Me_1

G Total Percentage Total 7.1

R Total Percentage Total 42.5

Input DS_3 (see structure)

Id_1 Id_2 Id_3 Id_4 Me_1

G Total Percentage Total 7.5

R Total Percentage Total 33.7

Example 1

DS_r := DS_1 > 20;

results in (see structure):

DS_r

Id_1 Id_2 Id_3 Id_4 Id_5 bool_var

2 G 2011 Total Percentage

2 R 2011 Total Percentage False

2 F 2011 Total Percentage True

Example 2

DS_r := DS_1 [calc Me_2 := Me_1 > 20];

results in (see structure):

DS_r

Id_1 Id_2 Id_3 Id_4 Id_5 Me_1 Me_2

2 G 2011 Total Percentage

2 R 2011 Total Percentage 12.2 False

2 F 2011 Total Percentage 29.5 True

Example 3

DS_r:= DS_2 > DS_3;

results in (see structure):

DS_r

Id_1 Id_2 Id_3 Id_4 bool_var

Reference Manual

187

https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Comparison%20operators/Greater%20than/examples/ds_2.json
https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Comparison%20operators/Greater%20than/examples/ds_3.json
https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Comparison%20operators/Greater%20than/examples/ex_1.json
https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Comparison%20operators/Greater%20than/examples/ex_2.json
https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Comparison%20operators/Greater%20than/examples/ex_3.json

G Total Percentage Total False

R Total Percentage Total True

Note that, for example, if the Me_1 column for Germany in the DS_2 or DS_3 Data Set had a NULL value the result
would be null for Germany (G) and true for Greece (R).

Less than < <=

Syntax

left { < | <= }¹ right

Input parameters

left the left operand

right the right operand

Examples of valid syntaxes

DS_1 < DS_2
DS_1 <= DS_2

Semantics for scalar operations

The operator < returns TRUE if left is smaller than right, FALSE otherwise. The operator <= returns TRUE if left is
smaller than or equal to right, FALSE otherwise. For example:

5 < 4 gives FALSE
5 <= 5 gives TRUE
"hello" < "hi" gives TRUE

Input parameters type

left, right

dataset {measure<scalar> _}
| component<scalar>
| scalar

Result type

result

dataset { measure<boolean> bool_var }
| component<boolean>
| boolean

Additional Constraints

Operands left and right must be of the same scalar type.

Behaviour

The operator has the typical behaviour of the “Operators changing the data type” (see the section “Typical
behaviours of the ML Operators”). Some valid examples could be: DS_1 < DS_2, DS_1 <= DS_2.

Examples

Given the operand dataset DS_1:

Reference Manual

188

Input DS_1 (see structure)

Id_1 Id_2 Id_3 Id_4 Me_1

2012 B Total Total 11094850

2012 G Total Total 11123034

2012 S Total Total 46818219

2012 M Total Total

2012 F Total Total 5401267

2012 W Total Total 7954662

Example 1

DS_r := DS_1 < 15000000;

results in (see structure):

DS_r

Id_1 Id_2 Id_3 Id_4 bool_var

2012 B Total Total True

2012 G Total Total True

2012 S Total Total False

2012 M Total Total

2012 F Total Total True

2012 W Total Total True

Between between

Syntax

between (op, from, to)

Input parameters

op the Data Set to be checked

from the left delimiter

to the right delimiter

Examples of valid syntaxes

ds2 := between(ds1, 5, 10)
ds2 := ds1 [calc m1 := between(me2, 5, 10)]

Semantics for scalar operations

The operator returns TRUE if op is greater than or equal to from and lower than or equal to to. In other terms, it is a
shortcut for the following:

op >= from and op <= to

The types of op, from and to must be compatible scalar types.

Reference Manual

189

https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Comparison%20operators/Less%20than/examples/ds_1.json
https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Comparison%20operators/Less%20than/examples/ex_1.json

Input parameters type

op

dataset {measure<scalar> _}
| component<scalar>
| scalar

from, to

component<scalar>
| scalar

Result type

result

dataset { measure<boolean> bool_var }
| component<boolean>
| boolean

Additional Constraints

The type of the operand (i.e., the measure of the dataset, the type of the component, the scalar type) must be the
same as that of from and to.

Behaviour

The operator has the typical behaviour of the “Operators changing the data type” (see the section “Typical
behaviours of the ML Operators”)

Examples

Given the operand dataset DS_1:

Input DS_1 (see structure)

Id_1 Id_2 Id_3 Id_4 Me_1

G Total Percentage Total 6

R Total Percentage Total -2

Example 1

DS_r:= between(DS_1, 5, 10);

results in (see structure):

DS_r

Id_1 Id_2 Id_3 Id_4 bool_var

G Total Percentage Total True

R Total Percentage Total False

Element of in / not_in

Syntax

op in collection
op not_in collection

collection ::= set | valueDomainName

Reference Manual

190

https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Comparison%20operators/Between/examples/ds_1.json
https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Comparison%20operators/Between/examples/ex_1.json

Input parameters

op the operand to be tested

collection the Set or the Value Domain which contains the values

set the Set which contains the values (it can be a Set name
or a Set literal)

valueDomainName the name of the Value Domain which contains the
values

Examples of valid syntaxes

ds := ds_2 in {1,4,6}
ds := ds_3 in mySet
ds := ds_3 in myValueDomain

Semantics for scalar operations

The in operator returns TRUE if op belongs to the collection, FALSE otherwise. The not_in operator returns FALSE
if op belongs to the collection, TRUE otherwise. For example:

1 in { 1, 2, 3 } returns TRUE
“a” in { “c, “ab”, “bb”, “bc” } returns FALSE
“b” not_in { “b”, ”hello”, ”c”} returns FALSE
“b” not_in { “a”, ”hello”, ”c”} returns TRUE

Input parameters type

op

dataset {measure<scalar> _}
| component<scalar>
| scalar

collection

set<scalar> | name<value_domain>

Result type

result

dataset { measure<boolean> bool_var }
| component<boolean>
| boolean

Additional Constraints

The operand must be of a basic scalar data type compatible with the basic scalar type of the collection.

Behavior

The in operator evaluates to TRUE if the operand is an element of the specified collection and FALSE otherwise, the
not_in the opposite.

The operator has the typical behaviour of the “Operators changing the data type” (see the section “Typical
behaviours of the ML Operators”).

The collection can be either a set of values defined in line or a name that references an externally defined Value
Domain or Set.

Reference Manual

191

Examples

Given the operand dataset DS_1 and the Value Domain named myGeoValueDomain (which has the basic scalar
type string) defined by {“AF”, “BS”, “FJ”, “GA”, “KH”, “MO”, “PK”, “QA”, “UG”}:

Input DS_1 (see structure)

Id_1 Id_2 Me_1

2012 BS 0

2012 GZ 4

2012 SQ 9

2012 MO 6

2012 FJ 7

2012 CQ 2

Example 1

DS_r := DS_1 in { 0, 3, 6, 12 };

results in (see structure):

DS_r

Id_1 Id_2 bool_var

2012 BS True

2012 GZ False

2012 SQ False

2012 MO True

2012 FJ False

2012 CQ False

Example 2

DS_r := DS_1 [calc Me_2:= Me_1 in { 0, 3, 6, 12 }];

results in (see structure):

DS_r

Id_1 Id_2 Me_1 Me_2

2012 BS 0 True

2012 GZ 4 False

2012 SQ 9 False

2012 MO 6 True

2012 FJ 7 False

2012 CQ 2 False

Example 3

DS_r := DS_1#Id_2 in myGeoValueDomain;

Reference Manual

192

https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Comparison%20operators/Element%20of/examples/ds_1.json
https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Comparison%20operators/Element%20of/examples/ex_1.json
https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Comparison%20operators/Element%20of/examples/ex_2.json

results in (see structure):

DS_r

Id_1 Id_2 bool_var

2012 BS True

2012 GZ False

2012 SQ False

2012 MO True

2012 FJ True

2012 CQ False

Match characters: match_characters

Syntax

match_characters (op , pattern)

Input parameters

op the dataset to be checked

pattern the regular expression to check the Data Set or the
Component against

Examples of valid syntaxes

match_characters(ds1, "[abc]+\d\d")
ds1 [calc m1 := match_characters(ds1, "[abc]+\d\d")]

Semantics for scalar operations

match_characters returns TRUE if op matches the regular expression regexp, FALSE otherwise.

The string regexp is an Extended Regular Expression as described in the POSIX standard. Different
implementations of VTL may implement different versions of the POSIX standard therefore it is possible that
match_characters may behave in slightly different ways.

Input parameters type

op

dataset {measure<string> _}
| component<string>
| string

pattern

component<string>
| string

Result type

result

dataset { measure<boolean> bool_var }
| component<boolean>
| boolean

Reference Manual

193

https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Comparison%20operators/Element%20of/examples/ex_3.json

Additional Constraints

If op is a Data Set then it has exactly one measure.

pattern is a POSIX regular expression.

Behaviour

The operator has the typical behaviour of the “Operators changing the data type” (see the section “Typical
behaviours of the ML Operators”).

Examples

Given the operand dataset DS_1:

Input DS_1 (see structure)

Id_1 Id_2 Id_3 Id_4 Me_1

G Total Percentage Total AX123

R Total Percentage Total AX2J5

Example 1

DS_r:=match_characters(DS_1, "[A-Za-z]{2}[0-9]{3}");

results in (see structure):

DS_r

Id_1 Id_2 Id_3 Id_4 bool_var

G Total Percentage Total True

R Total Percentage Total False

Is null: isnull

Syntax

isnull (op)

Input parameters

op the operand

Examples of valid syntaxes

isnull(DS_1)

Semantics for scalar operations

The operator returns TRUE if the value of the operand is NULL, FALSE otherwise. For example:

isnull(“Hello”) gives FALSE
isnull(NULL) gives TRUE

Input parameters type

op

Reference Manual

194

https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Comparison%20operators/Match%20characters/examples/ds_1.json
https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Comparison%20operators/Match%20characters/examples/ex_1.json

dataset {measure<scalar> _}
| component<scalar>
| scalar

Result type

result

dataset { measure<boolean> bool_var }
| component<boolean>
| boolean

Additional Constraints

If op is a Data Set then it has exactly one measure.

Behaviour

The operator has the typical behaviour of the “Operators changing the data type” (see the section “Typical
behaviours of the ML Operators”).

Examples

Given the operand dataset DS_1:

Input DS_1 (see structure)

Id_1 Id_2 Id_3 Id_4 Me_1

2012 B Total Total 11094850

2012 G Total Total 11123034

2012 S Total Total

2012 M Total Total 46818219

2012 F Total Total 5401267

2012 W Total Total

Example 1

DS_r := isnull(DS_1);

results in (see structure):

DS_r

Id_1 Id_2 Id_3 Id_4 bool_var

2012 B Total Total False

2012 G Total Total False

2012 S Total Total True

2012 M Total Total False

2012 F Total Total False

2012 W Total Total True

Example 2

DS_r := DS_1[calc Me_2 := isnull(Me_1)];

Reference Manual

195

https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Comparison%20operators/Is%20null/examples/ds_1.json
https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Comparison%20operators/Is%20null/examples/ex_1.json

results in (see structure):

DS_r

Id_1 Id_2 Id_3 Id_4 Me_1 Me_2

2012 B Total Total 11094850 False

2012 G Total Total 11123034 False

2012 S Total Total True

2012 M Total Total 46818219 False

2012 F Total Total 5401267 False

2012 W Total Total True

Exists in: exists_in

Syntax

exists_in (op1, op2 { , retain })

retain ::= true | false | all

Input parameters

op1 the operand dataset

op2 the operand dataset

retain the optional parameter to specify the Data Points to be
returned (default: all)

Examples of valid syntaxes

exists_in(DS_1, DS_2, true)
exists_in(DS_1, DS_2)
exists_in(DS_1, DS_2, all)

Semantics for scalar operations

This operator cannot be applied to scalar values.

Input parameters type

op1, op2

dataset

Result type

result

dataset { measure<boolean> bool_var }

Additional Constraints

op1 has at least all the identifier components of op2 or op2 has at least all the identifier components of op1.

Reference Manual

196

https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Comparison%20operators/Is%20null/examples/ex_2.json

Behaviour

The operator takes under consideration the common Identifiers of op1 and op2 and checks if the combinations of
values of these Identifiers which are in op1 also exist in op2.

The result has the same Identifiers as op1 and a boolean Measure bool_var whose value, for each Data Point of
op1, is TRUE if the combination of values of the common Identifier Components in op1 is found in a Data Point of
op2, FALSE otherwise.

If retain is all then both the Data Points having bool_var = TRUE and bool_var = FALSE are returned.

If retain is true then only the data points with bool_var = TRUE are returned.

If retain is false then only the Data Points with bool_var = FALSE are returned.

If the retain parameter is omitted, the default is all.

The operator has the typical behaviour of the “Operators changing the data type” (see the section “Typical
behaviours of the ML Operators”).

Examples

Given the operand datasets DS_1 and DS_2:

Input DS_1 (see structure)

Id_1 Id_2 Id_3 Id_4 Me_1

2012 B Total Total 11094850.0

2012 G Total Total 11123034.0

2012 S Total Total 46818219.0

2012 M Total Total 417546.0

2012 F Total Total 5401267.0

2012 W Total Total 7954662.0

Input DS_2 (see structure)

Id_1 Id_2 Id_3 Id_4 Me_1

2012 B Total Total 0.023

2012 G Total M 0.286

2012 S Total Total 0.064

2012 M Total M 0.043

2012 F Total Total

2012 W Total Total 0.08

Example 1

DS_r := exists_in (DS_1, DS_2, all);

results in (see structure):

DS_r

Id_1 Id_2 Id_3 Id_4 bool_var

2012 B Total Total True

2012 G Total Total False

2012 S Total Total True

2012 M Total Total False

Reference Manual

197

https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Comparison%20operators/Exists%20in/examples/ds_1.json
https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Comparison%20operators/Exists%20in/examples/ds_2.json
https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Comparison%20operators/Exists%20in/examples/ex_1.json

2012 F Total Total True

2012 W Total Total True

Example 2

DS_r := exists_in (DS_1, DS_2, true);

results in (see structure):

DS_r

Id_1 Id_2 Id_3 Id_4 bool_var

2012 B Total Total True

2012 S Total Total True

2012 F Total Total True

2012 W Total Total True

Example 3

DS_r := exists_in (DS_1, DS_2, false);

results in (see structure):

DS_r

Id_1 Id_2 Id_3 Id_4 bool_var

2012 G Total Total False

2012 M Total Total False

VTL-ML - Boolean Operators

Logical conjunction: and

Syntax

op1 and op2

Input parameters

op1 the first operand

op2 the second operand

Examples of valid syntaxes

DS_1 and DS_2

Semantics for scalar operations

The and operator returns TRUE if both operands are TRUE, otherwise FALSE. The two operands must be of
boolean type. For example: | FALSE and FALSE gives FALSE | FALSE and TRUE gives FALSE |
FALSE and NULL gives FALSE | TRUE and FALSE gives FALSE | TRUE and TRUE gives TRUE |
TRUE and NULL gives NULL | NULL and NULL gives NULL

Reference Manual

198

https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Comparison%20operators/Exists%20in/examples/ex_2.json
https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Comparison%20operators/Exists%20in/examples/ex_3.json

Input parameters type

op1, op2

dataset {measure<boolean> _ }
| component<boolean>
| boolean

Result type

result

dataset {measure<boolean> _ }
| component<boolean>
| boolean

Additional Constraints

None.

Behavior

The operator has the typical behaviour of the “Behaviour of Boolean operators” (see the section “Typical behaviours
of the ML Operators”).

Examples

Given the operand datasets DS_1 and DS_2:

Input DS_1 (see structure)

Id_1 Id_2 Id_3 Id_4 Me_1

M 15 B 2013 True

M 64 B 2013 False

M 65 B 2013 True

F 15 U 2013 False

F 64 U 2013 False

F 65 U 2013 True

Input DS_2 (see structure)

Id_1 Id_2 Id_3 Id_4 Me_1

M 15 B 2013 False

M 64 B 2013 True

M 65 B 2013 True

F 15 U 2013 True

F 64 U 2013 False

F 65 U 2013 False

Example 1

DS_r:= DS_1 and DS_2;

results in (see structure):

DS_r

Reference Manual

199

https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Boolean%20operators/Logical%20conjunction/examples/ds_1.json
https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Boolean%20operators/Logical%20conjunction/examples/ds_2.json
https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Boolean%20operators/Logical%20conjunction/examples/ex_1.json

Id_1 Id_2 Id_3 Id_4 Me_1

M 15 B 2013 False

M 64 B 2013 False

M 65 B 2013 True

F 15 U 2013 False

F 64 U 2013 False

F 65 U 2013 False

Example 2

DS_r := DS_1 [calc Me_2:= Me_1 and true];

results in (see structure):

DS_r

Id_1 Id_2 Id_3 Id_4 Me_1 Me_2

M 15 B 2013 True True

M 64 B 2013 False False

M 65 B 2013 True True

F 15 U 2013 False False

F 64 U 2013 False False

F 65 U 2013 True True

Logical disjunction: or

Syntax

op1 or op2

Input parameters

op1 the first operand

op2 the second operand

Examples of valid syntaxes

DS_1 or DS_2

Semantics for scalar operations

The or operator returns TRUE if at least one of the operands is TRUE, otherwise FALSE. The two operands must be
of boolean type. For example: | FALSE or FALSE gives FALSE | FALSE or TRUE gives TRUE | FALSE or NULL
gives NULL | TRUE or FALSE gives TRUE | TRUE or TRUE gives TRUE | TRUE or NULL gives TRUE |
NULL or NULL gives NULL

Input parameters type

op1, op2

Reference Manual

200

https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Boolean%20operators/Logical%20conjunction/examples/ex_2.json

dataset {measure<boolean> _ }
| component<boolean>
| boolean

Result type

result

dataset {measure<boolean> _ }
| component<boolean>
| boolean

Additional Constraints

None.

Behavior

The operator has the typical behaviour of the “Behaviour of Boolean operators” (see the section “Typical behaviours
of the ML Operators”).

Examples

Given the operand datasets DS_1 and DS_2:

Input DS_1 (see structure)

Id_1 Id_2 Id_3 Id_4 Me_1

M 15 B 2013 True

M 64 B 2013 False

M 65 B 2013 True

F 15 U 2013 False

F 64 U 2013 False

F 65 U 2013 True

Input DS_2 (see structure)

Id_1 Id_2 Id_3 Id_4 Me_1

M 15 B 2013 False

M 64 B 2013 True

M 65 B 2013 True

F 15 U 2013 True

F 64 U 2013 False

F 65 U 2013 False

Example 1

DS_r:= DS_1 or DS_2;

results in (see structure):

DS_r

Id_1 Id_2 Id_3 Id_4 Me_1

M 15 B 2013 True

Reference Manual

201

https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Boolean%20operators/Logical%20disjunction/examples/ds_1.json
https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Boolean%20operators/Logical%20disjunction/examples/ds_2.json
https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Boolean%20operators/Logical%20disjunction/examples/ex_1.json

M 64 B 2013 True

M 65 B 2013 True

F 15 U 2013 True

F 64 U 2013 False

F 65 U 2013 True

Example 2

DS_r:= DS_1 [calc Me_2:= Me_1 or true];

results in (see structure):

DS_r

Id_1 Id_2 Id_3 Id_4 Me_1 Me_2

M 15 B 2013 True True

M 64 B 2013 False True

M 65 B 2013 True True

F 15 U 2013 False True

F 64 U 2013 False True

F 65 U 2013 True True

Exclusive disjunction: xor

Syntax

op1 xor op2

Input parameters

op1 the first operand

op2 the second operand

Examples of valid syntaxes

DS_1 xor DS_2

Semantics for scalar operations

The xor operator returns TRUE if only one of the operand is TRUE (but not both), FALSE otherwise. The two
operands must be of boolean type. For example: | FALSE xor FALSE gives FALSE | FALSE xor TRUE gives TRUE
| FALSE xor NULL gives NULL | TRUE xor FALSE gives TRUE | TRUE xor TRUE gives FALSE |
TRUE xor NULL gives NULL | NULL xor NULL gives NULL

Input parameters type

op1, op2

dataset {measure<boolean> _ }
| component<boolean>
| boolean

Reference Manual

202

https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Boolean%20operators/Logical%20disjunction/examples/ex_2.json

Result type

result

dataset {measure<boolean> _ }
| component<boolean>
| boolean

Additional Constraints

None.

Behaviour

The operator has the typical behaviour of the “Behaviour of Boolean operators” (see the section “Typical behaviours
of the ML Operators”).

Examples

Given the operand datasets DS_1 and DS_2:

Input DS_1 (see structure)

Id_1 Id_2 Id_3 Id_4 Me_1

M 15 B 2013 True

M 64 B 2013 False

M 65 B 2013 True

F 15 U 2013 False

F 64 U 2013 False

F 65 U 2013 True

Input DS_2 (see structure)

Id_1 Id_2 Id_3 Id_4 Me_1

M 15 B 2013 False

M 64 B 2013 True

M 65 B 2013 True

F 15 U 2013 True

F 64 U 2013 False

F 65 U 2013 False

Example 1

DS_r:=DS_1 xor DS_2;

results in (see structure):

DS_r

Id_1 Id_2 Id_3 Id_4 Me_1

M 15 B 2013 True

M 64 B 2013 True

M 65 B 2013 False

F 15 U 2013 True

Reference Manual

203

https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Boolean%20operators/Exclusive%20disjunction/examples/ds_1.json
https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Boolean%20operators/Exclusive%20disjunction/examples/ds_2.json
https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Boolean%20operators/Exclusive%20disjunction/examples/ex_1.json

F 64 U 2013 False

F 65 U 2013 True

Example 2

DS_r:= DS_1 [calc Me_2:= Me_1 xor true];

results in (see structure):

DS_r

Id_1 Id_2 Id_3 Id_4 Me_1 Me_2

M 15 B 2013 True False

M 64 B 2013 False True

M 65 B 2013 True False

F 15 U 2013 False True

F 64 U 2013 False True

F 65 U 2013 True False

Logical negation: not

Syntax

not op

Input parameters

op the first operand

Examples of valid syntaxes

not DS_1

Semantics for scalar operations

The not operator returns TRUE if op is FALSE, otherwise TRUE. The input operand must be of boolean type. For
example: | not FALSE gives TRUE | not TRUE gives FALSE | not NULL gives NULL

Input parameters type

op

dataset {measure<boolean> _ }
| component<boolean>
| boolean

Result type

result

dataset {measure<boolean> _ }
| component<boolean>
| boolean

Reference Manual

204

https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Boolean%20operators/Exclusive%20disjunction/examples/ex_2.json

Additional Constraints

None.

Behaviour

The operator has the typical behaviour of the “Behaviour of Boolean operators” (see the section “Typical behaviours
of the ML Operators”).

Examples

Given the operand dataset DS_1:

Input DS_1 (see structure)

Id_1 Id_2 Id_3 Id_4 Me_1

M 15 B 2013 True

M 64 B 2013 False

M 65 B 2013 True

F 15 U 2013 False

F 64 U 2013 False

F 65 U 2013 True

Example 1

DS_r:= not DS_1;

results in (see structure):

DS_r

Id_1 Id_2 Id_3 Id_4 Me_1

M 15 B 2013 False

M 64 B 2013 True

M 65 B 2013 False

F 15 U 2013 True

F 64 U 2013 True

F 65 U 2013 False

Example 2

DS_r:= DS_1 [calc Me_2 := not Me_1];

results in (see structure):

DS_r

Id_1 Id_2 Id_3 Id_4 Me_1 Me_2

M 15 B 2013 True False

M 64 B 2013 False True

M 65 B 2013 True False

F 15 U 2013 False True

Reference Manual

205

https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Boolean%20operators/Logical%20negation/examples/ds_1.json
https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Boolean%20operators/Logical%20negation/examples/ex_1.json
https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Boolean%20operators/Logical%20negation/examples/ex_2.json

F 64 U 2013 False True

F 65 U 2013 True False

VTL-ML - Time Operators

This chapter describes the time operators, which are the operators dealing with time, date and time_period basic
scalar types. The general aspects of the behaviour of these operators is described in the section “Behaviour of the
Time Operators”. The time data type is the most general type and denotes a generic time interval, having start and
end points in time and therefore a duration, which is the time intervening between the start and end points. The date
data type denotes a generic time instant (a point in time), which is a time interval with zero duration. The time_period
data type denotes a regular time interval whose regular duration is explicitly represented inside each time_period
value and is named period_indicator. In some sense, we say that date and time_period are special cases of time, the
former with coinciding extremes and zero duration and the latter with regular duration. The time data type is
overarching in the sense that it comprises date and time_period. Finally, duration data type represents a generic time
span, independently of any specific start and end date.

The time, date and time period formats used here are explained in the User Manual in the section “External
representations and literals used in the VTL Manuals”.

The period indicator P id of the duration type and its possible values are:

D Day
W Week
M Month
Q Quarter
S Semester
A Year

As already said, these representation are not prescribed by VTL and are not part of the VTL standard, each VTL
system can personalize the representation of time, date, time_period and duration as desired. The formats shown
above are only the ones used in the examples.

For a fully-detailed explanation, please refer to the User Manual.

Period indicator: period_indicator

Syntax

period_indicator ({ op })

Input parameters

op the operand

Examples of valid syntaxes

::

period_indicator (ds_1) period_indicator // (if used in a clause the operand op can be omitted)

Semantics for scalar operations

period_indicator returns the period indicator of a time_period value. The period indicator is the part of the
time_period value which denotes the duration of the time period (e.g. day, week, month…).

Input parameters type

op

dataset { identifier <time_period> _ , identifier _* }
| component<time_period>
| time_period

Reference Manual

206

Result type

result

dataset { measure<duration> duration_var }
| component<duration>
| duration

Additional Constraints

If op is a Data Set then it has exactly one Identifier of type time_period and may have other Identifiers. If the operator
is used in a clause and op is omitted, then the Data Set to which the clause is applied has exactly one Identifier of
type time_period and may have other Identifiers.

Behaviour

The operator extracts the period indicator part of the time_period value. The period indicator is computed for each
Data Point. When the operator is used in a clause, it extracts the period indicator from the time_period value the Data
Set to which the clause is applied.

The operator returns a Data Set with the same Identifiers of op and one Measure of type duration named
duration_var. As for all the Variables, a proper Value Domain must be defined to contain the possible values of the
period indicator and duration_var. The values used in the examples are listed at the beginning of this chapter
“VTL-ML Time operators”.

Examples

Given the operand dataset DS_1:

Input DS_1 (see structure)

Id_1 Id_2 Id_3 Me_1

A 1 2010 10

A 1 2013Q1 50

Example 1

DS_r := period_indicator (DS_1);

results in (see structure):

DS_r

Id_1 Id_2 Id_3 duration_var

A 1 2010 A

A 1 2013-Q1 Q

Example 2

DS_r := DS_1 [filter period_indicator (Id_3) = cast("A", duration)];

results in (see structure):

DS_r

Id_1 Id_2 Id_3 Me_1

A 1 2010 10

Reference Manual

207

https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Time%20operators/Period%20indicator/examples/ds_1.json
https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Time%20operators/Period%20indicator/examples/ex_1.json
https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Time%20operators/Period%20indicator/examples/ex_2.json

Fill time series: fill_time_series

Syntax

fill_time_series (op { , limitsMethod })

limitsMethod ::= single | all

Input parameters

op the operand

limitsMethod method for determining the limits of the time interval to
be filled (default: all)

Examples of valid syntaxes

fill_time_series (ds)
fill_time_series (ds, all)

Semantics for scalar operations

The fill_time_series operator does not perform scalar operations.

Input parameters type

op

dataset { identifier <time > _ , identifier _* }

Result type

result

dataset { identifier <time > _ , identifier _* }

Additional Constraints

The operand op has an Identifier of type time, date or time_period and may have other Identifiers.

Behaviour

This operator can be applied only on Data Sets of time series and returns a Data Set of time series.

The operator fills the possibly missing Data Points of all the time series belonging to the operand op within the time
limits automatically determined by applying the limit_method.

If limitsMethod is all, the time limits are determined with reference to all the time_series of the Data Set: the limits are
the minimum and the maximum values of the reference time Identifier Component of the Data Set.

If limitsMethod is single, the time limits are determined with reference to each single time_series of the Data Set: the
limits are the minimum and the maximum values of the reference time Identifier Component of the time series.

The expected Data Points are determined, for each time series, by considering the limits above and the period
(frequency) of the time series: all the Identifiers are kept unchanged except the reference time Identifier, which is
increased of one period at a time (e.g. day, week, month, quarter, year) from the lower to the upper time limit. For
each increase, an expected Data Point is identified.

If this expected Data Points is missing, it is added to the Data Set. For the added Data Points, Measures and
Attributes assume the NULL value.

The output Data Set has the same Identifier, Measure and Attribute Components as the operand Data Set. The
output Data Set contains the same time series as the operand, because the time series Identifiers (all the Identifiers
except the reference time Identifier) are not changed.

Reference Manual

208

As mentioned in the section “Behaviour of the Time Operators”, the operator is assumed to know which is the
reference time Identifier as well as the period of each time series. Some valid examples could be: fill_time_series (
ds), fill_time_series (ds, all).

Examples

As described in the User Manual, the time data type is the intervening time between two time points and using the
ISO 8601 standard it can be expressed through a start date and an end date separated by a slash at any precision.
In the examples relevant to the time data type the precision is set at the level of month and the time format
YYYY-MM/YYYY-MM is used.

Given:

• The operand dataset DS_1, which contains annual time series, where Id_2 is the reference time Identifier of
time type;

• the operand dataset DS_2, which contains annual time series, where Id_2 is the reference time Identifier of
date type and conventionally each period is identified by its last day;

• the operand dataset DS_3, which contains annual time series, where Id_2 is the reference time Identifier of
time_period type;

• and the operand dataset DS_4, which contains both quarterly and annual time series relevant to the same
phenomenon “A”, where Id_2 is the reference time Identifier of time_period type:

Input DS_1 (see structure)

Id_1 Id_2 Me_1

A 2010M1/2010M12 hello world

A 2012M1/2012M12 say hello

A 2013M1/2013M12 he

B 2011M1/2011M12 hi, hello!

B 2012M1/2012M12 hi

B 2014M1/2014M12 hello!

Input DS_2 (see structure)

Id_1 Id_2 Me_1

A 2010-12-31 hello world

A 2012-12-31 say hello

A 2013-12-31 he

B 2011-12-31 hi, hello!

B 2012-12-31 hi

B 2014-12-31 hello!

Input DS_3 (see structure)

Id_1 Id_2 Me_1

A 2010 hello world

A 2012 say hello

A 2013 he

B 2011 hi, hello!

B 2012 hi

B 2014 hello!

Input DS_4 (see structure)

Reference Manual

209

https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Time%20operators/Fill%20time%20series/examples/ds_1.json
https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Time%20operators/Fill%20time%20series/examples/ds_2.json
https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Time%20operators/Fill%20time%20series/examples/ds_3.json
https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Time%20operators/Fill%20time%20series/examples/ds_4.json

Id_1 Id_2 Me_1

A 2010 hello world

A 2012 say hello

A 2010Q1 he

A 2010Q2 hi, hello!

A 2010Q4 hi

A 2011Q2 hello!

Example 1

DS_r := fill_time_series (DS_1, single);

results in (see structure):

DS_r

Id_1 Id_2 Me_1

A 2010M1/2010M12 hello world

A 2011M1/2011M12

A 2012M1/2012M12 say hello

A 2013M1/2013M12 he

B 2011M1/2011M12 hi, hello!

B 2012M1/2012M12 hi

B 2013M1/2013M12

B 2014M1/2014M12 hello!

Example 2

DS_r := fill_time_series (DS_1, all);

results in (see structure):

DS_r

Id_1 Id_2 Me_1

A 2010M1/2010M12 hello world

A 2011M1/2011M12

A 2012M1/2012M12 say hello

A 2013M1/2013M12 he

A 2014M1/2014M12

B 2010M1/2010M12

B 2011M1/2011M12 hi, hello!

B 2012M1/2012M12 hi

B 2013M1/2013M12

B 2014M1/2014M12 hello!

Reference Manual

210

https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Time%20operators/Fill%20time%20series/examples/ex_1.json
https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Time%20operators/Fill%20time%20series/examples/ex_2.json

Example 3

DS_r := fill_time_series (DS_2, single);

results in (see structure):

DS_r

Id_1 Id_2 Me_1

A 2010-12-31 hello world

A 2011-12-31

A 2012-12-31 say hello

A 2013-12-31 he

B 2011-12-31 hi, hello!

B 2012-12-31 hi

B 2013-12-31

B 2014-12-31 hello!

Example 4

DS_r := fill_time_series (DS_2, all);

results in (see structure):

DS_r

Id_1 Id_2 Me_1

A 2010-12-31 hello world

A 2011-12-31

A 2012-12-31 say hello

A 2013-12-31 he

A 2014-12-31

B 2010-12-31

B 2011-12-31 hi, hello!

B 2012-12-31 hi

B 2013-12-31

B 2014-12-31 hello!

Example 5

DS_r := fill_time_series (DS_3, single);

results in (see structure):

DS_r

Id_1 Id_2 Me_1

A 2010 hello world

Reference Manual

211

https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Time%20operators/Fill%20time%20series/examples/ex_3.json
https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Time%20operators/Fill%20time%20series/examples/ex_4.json
https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Time%20operators/Fill%20time%20series/examples/ex_5.json

A 2011

A 2012 say hello

A 2013 he

B 2011 hi, hello!

B 2012 hi

B 2013

B 2014 hello!

Example 6

DS_r := fill_time_series (DS_3, all);

results in (see structure):

DS_r

Id_1 Id_2 Me_1

A 2010 hello world

A 2011

A 2012 say hello

A 2013 he

A 2014

B 2010

B 2011 hi, hello!

B 2012 hi

B 2013

B 2014 hello!

Example 7

DS_r := fill_time_series (DS_4, single);

results in (see structure):

DS_r

Id_1 Id_2 Me_1

A 2010 hello world

A 2011

A 2012 say hello

A 2010Q1 he

A 2010Q2 hi, hello!

A 2010Q3

A 2010Q4 hi

A 2011Q1

A 2011Q2 hello!

Reference Manual

212

https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Time%20operators/Fill%20time%20series/examples/ex_6.json
https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Time%20operators/Fill%20time%20series/examples/ex_7.json

Example 8

DS_r := fill_time_series (DS_4, all);

results in (see structure):

DS_r

Id_1 Id_2 Me_1

A 2010 hello world

A 2011

A 2012 say hello

A 2010-Q1 he

A 2010-Q2 hi, hello!

A 2010-Q3

A 2010-Q4 hi

A 2011-Q1

A 2011-Q2 hello!

A 2011-Q3

A 2011-Q4

A 2012-Q1

A 2012-Q2

A 2012-Q3

A 2012-Q4

Flow to stock: flow_to_stock

Syntax

flow_to_stock (op)

Input parameters

op the operand

Examples of valid syntaxes

flow_to_stock (ds_1)

Semantics for scalar operations

This operator does not perform scalar operations.

Input parameters type

op

dataset { identifier < time > _ , identifier _* , measure<number> _+ }

Reference Manual

213

https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Time%20operators/Fill%20time%20series/examples/ex_8.json

Result type

result

dataset { identifier < time > _ , identifier _* , measure<number> _+ }

Additional Constraints

The operand dataset has an Identifier of type time, date or time_period and may have other Identifiers.

Behavior

The statistical data that describe the “state” of a phenomenon on a given moment (e.g. resident population on a
given moment) are often referred to as “stock data”.

On the contrary, the statistical data that describe “events” which can happen continuously (e.g. changes in the
resident population, such as births, deaths, immigration, emigration), are often referred to as “flow data”.

This operator takes in input a Data Set which are interpreted as flows and calculates the change of the
corresponding stock since the beginning of each time series by summing the relevant flows. In other words, the
operator perform the cumulative sum from the first Data Point of each time series to each other following Data Point
of the same time series.

The flow_to_stock operator can be applied only on Data Sets of time series and returns a Data Set of time series.

The result Data Set has the same Identifier, Measure and Attribute Components as the operand Data Set and
contains the same time series as the operand, because the time series Identifiers (all the Identifiers except the
reference time Identifier) are not changed.

As mentioned in the section “Behaviour of the Time Operators”, the operator is assumed to know which is the time
Identifier as well as the period of each time series.

Examples

As described in the User Manual, the time data type is the intervening time between two time points and using the
ISO 8601 standard it can be expressed through a start date and an end date separated by a slash at any precision.
In the examples relevant to the time data type the precision is set at the level of month and the time format
YYYY-MM/YYYY-MM is used.

Given:

• The operand dataset DS_1, which contains annual time series, where Id_2 is the reference time Identifier of
time type;

• the operand dataset DS_2, which contains annual time series, where Id_2 is the reference time Identifier of
date type (conventionally each period is identified by its last day);

• the operand dataset DS_3, which contains annual time series, where Id_2 is the reference time Identifier of
time_period type;

• the operand dataset DS_4, which contains both quarterly and annual time series relevant to the same
phenomenon “A”, where Id_2 is the reference time Identifier of time_period type:

Input DS_1 (see structure)

Id_1 Id_2 Me_1

A 2010M1/2010M12 2.0

A 2011M1/2011M12 5.0

A 2012M1/2012M12 -3.0

A 2013M1/2013M12 9.0

B 2010M1/2010M12 4.0

B 2011M1/2011M12 -8.0

B 2012M1/2012M12 0.0

B 2013M1/2013M12 6.0

Reference Manual

214

https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Time%20operators/Flow%20to%20stock/examples/ds_1.json

Input DS_2 (see structure)

Id_1 Id_2 Me_1

A 2010-12-31 2.0

A 2011-12-31 5.0

A 2012-12-31 -3.0

A 9999-12-31 9.0

B 2010-12-31 4.0

B 2011-12-31 -8.0

B 2012-12-31 0.0

B 9999-12-31 6.0

Input DS_3 (see structure)

Id_1 Id_2 Me_1

A 2010 2.0

A 2011 5.0

A 2012 -3.0

A 2013 9.0

B 2010 4.0

B 2011 -8.0

B 2012 0.0

B 2013 6.0

Input DS_4 (see structure)

Id_1 Id_2 Me_1

A 2010 2.0

A 2011 7.0

A 2012 4.0

A 2013 13.0

A 2010Q1 2.0

A 2010Q2 -3.0

A 2010Q3 7.0

A 2010Q4 -4.0

Example 1

DS_r := flow_to_stock (DS_1);

results in (see structure):

DS_r

Id_1 Id_2 Me_1

A 2010M1/2010M12 2.0

A 2011M1/2011M12 7.0

A 2012M1/2012M12 4.0

Reference Manual

215

https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Time%20operators/Flow%20to%20stock/examples/ds_2.json
https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Time%20operators/Flow%20to%20stock/examples/ds_3.json
https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Time%20operators/Flow%20to%20stock/examples/ds_4.json
https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Time%20operators/Flow%20to%20stock/examples/ex_1.json

A 2013M1/2013M12 13.0

B 2010M1/2010M12 4.0

B 2011M1/2011M12 -4.0

B 2012M1/2012M12 -4.0

B 2013M1/2013M12 2.0

Example 2

DS_r := flow_to_stock (DS_2);

results in (see structure):

DS_r

Id_1 Id_2 Me_1

A 2010-12-31 2.0

A 2011-12-31 7.0

A 2012-12-31 4.0

A 9999-12-31 13.0

B 2010-12-31 4.0

B 2011-12-31 -4.0

B 2012-12-31 -4.0

B 9999-12-31 2.0

Example 3

DS_r := flow_to_stock (DS_3);

results in (see structure):

DS_r

Id_1 Id_2 Me_1

A 2010 2.0

A 2011 7.0

A 2012 4.0

A 2013 13.0

B 2010 4.0

B 2011 -4.0

B 2012 -4.0

B 2013 2.0

Example 4

DS_r := flow_to_stock (DS_4);

results in (see structure):

Reference Manual

216

https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Time%20operators/Flow%20to%20stock/examples/ex_2.json
https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Time%20operators/Flow%20to%20stock/examples/ex_3.json
https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Time%20operators/Flow%20to%20stock/examples/ex_4.json

DS_r

Id_1 Id_2 Me_1

A 2010 2.0

A 2011 9.0

A 2012 13.0

A 2013 26.0

A 2010-Q1 2.0

A 2010-Q2 -1.0

A 2010-Q3 6.0

A 2010-Q4 2.0

Stock to flow: stock_to_flow

Syntax

stock_to_flow (op)

Input parameters

op the operand

Examples of valid syntaxes

stock_to_flow (ds_1)

Semantics for scalar operations

This operator does not perform scalar operations.

Input parameters type

op

dataset { identifier < time > _ , identifier _* , measure<number> _+ }

Result type

result

dataset { identifier < time > _ , identifier _* , measure<number> _+ }

Additional Constraints

The operand dataset has an Identifier of type time, date or time_period and may have other Identifiers.

Behaviour

The statistical data that describe the “state” of a phenomenon on a given moment (e.g. resident population on a
given moment) are often referred to as “stock data”.

On the contrary, the statistical data that describe “events” which can happen continuously (e.g. changes in the
resident population, such as births, deaths, immigration, emigration), are often referred to as “flow data”.

This operator takes in input a Data Set of time series which is interpreted as stock data and, for each time series,
calculates the corresponding flow data by subtracting from the measure values of each regular period the
corresponding measure values of the previous one.

Reference Manual

217

The stock_to_flow operator can be applied only on Data Sets of time series and returns a Data Set of time series.
The result Data Set has the same Identifier, Measure and Attribute Components as the operand Data Set and
contains the same time series as the operand, because the time series Identifiers (all the Identifiers except the
reference time Identifier) are not changed.

The Attribute propagation rule is not applied.

As mentioned in the section “Behaviour of the Time Operators”, the operator is assumed to know which is the time
Identifier as well as the period of each time series.

Examples

As described in the User Manual, the time data type is the intervening time between two time points and using the
ISO 8601 standard it can be expressed through a start date and an end date separated by a slash at any precision.
In the examples relevant to the time data type the precision is set at the level of month and the time format
YYYY-MM/YYYY-MM is used.

Given:

• The operand dataset DS_1, which contains annual time series, where Id_2 is the reference time Identifier of
time type;

• the operand dataset DS_2, which contains annual time series, where Id_2 is the reference time Identifier of
date type (conventionally each period is identified by its last day);

• the operand dataset DS_3, which contains annual time series, where Id_2 is the reference time Identifier of
time_period type;

• and the operand dataset DS_4, which contains both quarterly and annual time series relevant to the same
phenomenon “A”, where Id_2 is the time Identifier of time_period type:

Input DS_1 (see structure)

Id_1 Id_2 Me_1

A 2010M1/2010M12 2.0

A 2011M1/2011M12 7.0

A 2012M1/2012M12 4.0

A 2013M1/2013M12 13.0

B 2010M1/2010M12 4.0

B 2011M1/2011M12 -4.0

B 2012M1/2012M12 -4.0

B 2013M1/2013M12 2.0

Input DS_2 (see structure)

Id_1 Id_2 Me_1

A 2010-12-31 2.0

A 2011-12-31 7.0

A 2012-12-31 4.0

A 2013-12-31 13.0

B 2010-12-31 4.0

B 2011-12-31 -4.0

B 2012-12-31 -4.0

B 2013-12-31 2.0

Input DS_3 (see structure)

Id_1 Id_2 Me_1

Reference Manual

218

https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Time%20operators/Stock%20to%20flow/examples/ds_1.json
https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Time%20operators/Stock%20to%20flow/examples/ds_2.json
https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Time%20operators/Stock%20to%20flow/examples/ds_3.json

A 2010 2.0

A 2011 7.0

A 2012 4.0

A 2013 13.0

B 2010 4.0

B 2011 -4.0

B 2012 -4.0

B 2013 2.0

Input DS_4 (see structure)

Id_1 Id_2 Me_1

A 2010 2.0

A 2011 9.0

A 2012 13.0

A 2013 26.0

A 2010Q1 2.0

A 2010Q2 -1.0

A 2010Q3 6.0

A 2010Q4 2.0

Example 1

DS_r := stock_to_flow (DS_1);

results in (see structure):

DS_r

Id_1 Id_2 Me_1

A 2010M1/2010M12 2.0

A 2011M1/2011M12 5.0

A 2012M1/2012M12 -3.0

A 2013M1/2013M12 9.0

B 2010M1/2010M12 4.0

B 2011M1/2011M12 -8.0

B 2012M1/2012M12 0.0

B 2013M1/2013M12 6.0

Example 2

DS_r := stock_to_flow (DS_2);

results in (see structure):

DS_r

Reference Manual

219

https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Time%20operators/Stock%20to%20flow/examples/ds_4.json
https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Time%20operators/Stock%20to%20flow/examples/ex_1.json
https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Time%20operators/Stock%20to%20flow/examples/ex_2.json

Id_1 Id_2 Me_1

A 2010-12-31 2.0

A 2011-12-31 5.0

A 2012-12-31 -3.0

A 2013-12-31 9.0

B 2010-12-31 4.0

B 2011-12-31 -8.0

B 2012-12-31 0.0

B 2013-12-31 6.0

Example 3

DS_r := stock_to_flow (DS_3);

results in (see structure):

DS_r

Id_1 Id_2 Me_1

A 2010 2.0

A 2011 5.0

A 2012 -3.0

A 2013 9.0

B 2010 4.0

B 2011 -8.0

B 2012 0.0

B 2013 6.0

Example 4

DS_r := stock_to_flow (DS_4);

results in (see structure):

DS_r

Id_1 Id_2 Me_1

A 2010 2.0

A 2011 7.0

A 2012 4.0

A 2013 13.0

A 2010Q1 2.0

A 2010Q2 -3.0

A 2010Q3 7.0

A 2010Q4 -4.0

Reference Manual

220

https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Time%20operators/Stock%20to%20flow/examples/ex_3.json
https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Time%20operators/Stock%20to%20flow/examples/ex_4.json

Time shift: timeshift

Syntax

timeshift (op , shiftNumber)

Input parameters

op the operand

shiftNumber the number of periods to be shifted

Examples of valid syntaxes

timeshift (DS_1, 2)

Semantics for scalar operations

This operator does not perform scalar operations.

Input parameters type

op

dataset { identifier < time > _ , identifier _* }

shiftNumber

integer

Result type

result

dataset { identifier < time > _ , identifier _* }

Additional Constraints

The operand dataset has an Identifier of type time, date or time_period and may have other Identifiers.

Behavior

This operator takes in input a Data Set of time series and, for each time series of the Data Set, shifts the reference
time Identifier of a number of periods (of the time series) equal to the shiftNumber parameter. If shiftNumber is
negative, the shift is in the past, otherwise it is in the future. For example, if the period of the time series is month and
shiftNumber is -1 the reference time Identifier is shifted of two months in the past.

The operator can be applied only on Data Sets of time series and returns a Data Set of time series.

The result Data Set has the same Identifier, Measure and Attribute Components as the operand Data Set and
contains the same time series as the operand, because the time series Identifiers (all the Identifiers except the
reference time Identifier) are not changed.

The Attribute propagation rule is not applied.

As mentioned in the section “Behaviour of the Time Operators”, the operator is assumed to know which is the time
Identifier as well as the period of each data point.

Examples

As described in the User Manual, the time data type is the intervening time between two time points and using the
ISO 8601 standard it can be expressed through a start date and an end date separated by a slash at any precision.
In the examples relevant to the time data type the precision is set at the level of month and the time format
YYYY-MM/YYYY-MM is used.

Reference Manual

221

Given:

• the operand dataset DS_1, which contains annual time series, where Id_2 is the reference time Identifier of time
type;

• the operand dataset DS_2, which contains annual time series, where Id_2 is the reference time Identifier of
date type (conventionally each period is identified by its last day);

• the operand dataset DS_3, which contains annual time series, where Id_2 is the reference time Identifier of
time_period type;

• and the operand dataset DS_4, which contains both quarterly and annual time series relevant to the same
phenomenon “A”, where Id_2 is the reference time Identifier of time_period type:

Input DS_1 (see structure)

Id_1 Id_2 Me_1

A 2010M1/2010M12 hello world

A 2011M1/2011M12

A 2012M1/2012M12 say hello

A 2013M1/2013M12 he

B 2010M1/2010M12 hi, hello!

B 2011M1/2011M12 hi

B 2012M1/2012M12

B 2013M1/2013M12 hello!

Input DS_2 (see structure)

Id_1 Id_2 Me_1

A 2010-12-31 hello world

A 2011-12-31

A 2012-12-31 say hello

A 2013-12-31 he

B 2010-12-31 hi, hello!

B 2011-12-31 hi

B 2012-12-31

B 2013-12-31 hello!

Input DS_3 (see structure)

Id_1 Id_2 Me_1

A 2010 hello world

A 2011

A 2012 say hello

A 2013 he

B 2010 hi,hello!

B 2011 hi

B 2012

B 2013 hello!

Input DS_4 (see structure)

Id_1 Id_2 Me_1

Reference Manual

222

https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Time%20operators/Time%20shift/examples/ds_1.json
https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Time%20operators/Time%20shift/examples/ds_2.json
https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Time%20operators/Time%20shift/examples/ds_3.json
https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Time%20operators/Time%20shift/examples/ds_4.json

A 2010 hello world

A 2011

A 2012 say hello

A 2013 he

A 2010Q1 hi, hello!

A 2010Q2 hi

A 2010Q3

A 2010Q4 hello!

Example 1

DS_r := timeshift (DS_1 , -1);

results in (see structure):

DS_r

Id_1 Id_2 Me_1

A 2009M1/2009M12 hello world

A 2010M1/2010M12

A 2011M1/2011M12 say hello

A 2012M1/2012M12 he

B 2009M1/2009M12 hi, hello!

B 2010M1/2010M12 hi

B 2011M1/2011M12

B 2012M1/2012M12 hello!

Example 2

DS_r := timeshift (DS_2 , 2);

results in (see structure):

DS_r

Id_1 Id_2 Me_1

A 2012-12-31 hello world

A 2013-12-31

A 2014-12-31 say hello

A 2015-12-31 he

B 2012-12-31 hi, hello!

B 2013-12-31 hi

B 2014-12-31

B 2015-12-31 hello!

Reference Manual

223

https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Time%20operators/Time%20shift/examples/ex_1.json
https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Time%20operators/Time%20shift/examples/ex_2.json

Example 3

DS_r := timeshift (DS_3 , 1);

results in (see structure):

DS_r

Id_1 Id_2 Me_1

A 2011 hello world

A 2012

A 2013 say hello

A 2014 he

B 2011 hi,hello!

B 2012 hi

B 2013

B 2014 hello!

Example 4

DS_r := timeshift(DS_4 , -1);

results in (see structure):

DS_r

Id_1 Id_2 Me_1

A 2009 hello world

A 2010

A 2011 say hello

A 2012 he

A 2009Q4 hi, hello!

A 2010Q1 hi

A 2010Q2

A 2010Q3 hello!

Time aggregation: time_agg

Syntax

time_agg (periodIndTo { , periodIndFrom } { , op } { , first | last })

Input parameters

op
the scalar value, the Component or the Data Set to be
converted.
If not specified, then time_agg is used in combination
within an aggregation operator

Reference Manual

224

https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Time%20operators/Time%20shift/examples/ex_3.json
https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Time%20operators/Time%20shift/examples/ex_4.json

periodIndFrom the source period indicator

periodIndTo the target period indicator

Examples of valid syntaxes

sum (DS group all time_agg (“A”))
time_agg (“A”, cast (“2012Q1”, time_period , ”YYYY\Qq”))
time_agg(“M”, cast (“2012-12-23”, date, “YYYY-MM-DD”))
time_agg(“M”, DS1)
ds_2 := ds_1[calc Me1 := time_agg(“M”)]

Semantics for scalar operations

The operator converts a time, date or time_period value from a smaller to a larger duration.

Input parameters type

op

dataset { identifier < time > _ , identifier _* }
| component<time>
| time

periodIndFrom, periodIndTo

duration

Result type

result

dataset { identifier < time > _ , identifier _* }
| component<time>
| time

Additional Constraints

If op is a Data Set then it has exactly one Identifier of type time, date or time_period and may have other Identifiers.

If time_agg is used in combination with an aggregation operator, op must not be specified, and the source dataset
must have exactly one Identifier of type time, date or time_period (it may have additional Identifiers of other types).

It is only possible to convert smaller duration values to larger duration values (e.g. it is possible to convert monthly
data to annual data but the contrary is not allowed).

Behaviour

The scalar version of this operator takes as input a time, date or time_period value, converts it to periodIndTo and
returns a scalar of the corresponding type.

The Data Set version acts on a single Measure Data Set of type time, date or time_period and returns a Data Set
having the same structure.

Finally, VTL also provides a component version, for use in combination with an aggregation operator, because the
change of frequency requires an aggregation. In this case, the operator converts the period_indicator of the data
points (e.g., convert monthly data to annual data).

On time type, the operator maps the input value into the comprising larger regular interval, whose duration is the one
specified by the periodIndTo parameter.

On date type, the operator maps the input value into the comprising larger period, whose duration is the one
specified by the periodIndTo parameter, which is conventionally represented either by the start or by the end date,
according to the first/last parameter.

Reference Manual

225

On time_period type, the operator maps the input value into the comprising larger time period specified by the
periodIndTo parameter (the original period indicator is converted in the target one and the number of periods is
adjusted correspondingly).

The input duration periodIndFrom is optional. In case of time_period Data Points, the input duration can be inferred
from the internal representation of the value. In case of time or date types, it is inferred by the implementation.

Examples

Given the operand dataset DS_1:

Input DS_1 (see structure)

Id_1 Id_2 Me_1

2010Q1 A 20

2010Q2 A 20

2010Q3 A 20

2010Q1 B 50

2010Q2 B 50

2010Q1 C 10

2010Q2 C 10

Example 1

DS_r := sum (DS_1 group all time_agg ("A"));

results in (see structure):

DS_r

Id_1 Id_2 Me_1

2010 A 60

2010 B 100

2010 C 20

Example 2

DS_r := time_agg ("Q", cast ("2012M01", time_period, "YYYY\MMM"));

returns “2012Q1”.

Example 3

The following example maps a date to quarter level, 2012 (end of the period):

DS_r := time_agg(“Q”, cast(“20120213”, date, “YYYYMMDD”), last);

and produces a date value corresponding to the string “20120331”.

Example 4

The following example maps a date to year level, 2012 (beginning of the period):

DS_r := time_agg(cast(“A”, “2012M1”, date, “YYYYMMDD”), first);

and produces a date value corresponding to the string “20120101”.

Reference Manual

226

https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Time%20operators/Time%20aggregation/examples/ds_1.json
https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Time%20operators/Time%20aggregation/examples/ex_1.json

Actual time: current_date

Syntax

current_date()

Input parameters

None.

Examples of valid syntaxes

current_date()

Semantics for scalar operations

The operator current_date returns the current time as a date type.

Input parameters type

This operator has no input parameters.

Result type

result

date

Additional Constraints

None.

Behavior

The operator returns the current date.

Examples

Example 1

DS_r := current_date();

Example 2

DS_r := cast (current_date(), string, “YYYY.MM.DD”);

Days between two dates: datediff

Syntax

datediff (dateFrom , dateTo)

Input parameters

dateFrom the starting date/time period

dateTo the ending date/time period

Reference Manual

227

Examples of valid syntaxes

datediff (2022Q1, 2023Q2)
datediff (2020-12-14,2021-04-20)
datediff (2021Q2, 2021-11-04)
ds2 := ds1[calc Me3 := datediff(Me1, Me2)]

Semantics for scalar operations

The operator datediff returns the number of days between two dates or time periods. The last day of the time period
is assumed as the starting/ending date.

Input parameters type

dateFrom, dateTo:

component<time>
| time

Result type

result

component<integer>
| integer

Additional Constraints

None.

Behaviour

The scalar version of this operator takes as input two date or time_period values and returns a scalar integer value.

In the component version, that can be used in a calc clause, a new component of type integer is added to the
dataset.

Examples

Given the dataset DS_1:

Input DS_1 (see structure)

Id_1 Id_2 Me_1

G 2019-01-01 2020Q2

G 2019-07-01 2021Q1

T 2020-12-31 2021Q1

Example 1

DS_r:= DS_1[calc Me_2 := datediff(Id_2, Me_1)];

results in (see structure):

DS_r

Id_1 Id_2 Me_1 Me_2

G 2019-01-01 2020Q2 546

G 2019-07-01 2021Q1 639

T 2020-12-31 2021Q1 90

Reference Manual

228

https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Time%20operators/Days%20between%20two%20dates/examples/ds_1.json
https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Time%20operators/Days%20between%20two%20dates/examples/ex_1.json

Example 2

dayofyear (2020-04-07);

returns 98.

Add a time unit to a dete: dateadd

Syntax

dateadd (op , shiftNumber, periodInd)

Input parameters

op the operand

shiftNumber the number of periods to be shifted

periodInd the period indicator

Examples of valid syntaxes

dateadd (2022Q1, 5, “M”)
dateadd (2020-12-14, -3 , “Y”)
ds2 := ds1[calc Me2 := dateadd(Me1, 3, “W”)]
DS_r := dateadd(DS_1, 1, “M”)

Semantics for scalar operations

The operator dateadd returns the date resulting from adding (or subtracting) the given time units. The last day of the
time period is assumed as the starting date. Please note that adding months to a given date returns the date plus
integer months, adding years to a given date returns the date plus integer years; for years the “Y” is used. For
example:

dateadd (2020-02-10, 1, “M”) gives 2020-03-10
dateadd (2020-02-10, 30, “D”) gives 2020-03-11
dateadd (2020-02-10, 4, “W”) gives 2020-03-09
dateadd (2020-02-10, 1, “Y”) gives 2021-02-10
dateadd (2020-02-10, 365, “D”) gives 2021-02-09

Input parameters type

op:

dataset{ identifier < time > _ , identifier _* }
| component<time>
| time

shiftNumber:

Integer

periodInd:

Duration

Result type

result

dataset{ identifier < time > _ , identifier _* }
| component<time>
| time

Reference Manual

229

Additional Constraints

None.

Behaviour

The scalar version of this operator takes as input one date or time_period value and returns a date
adding/substracting the indicated number of time units.

In the component version, that can be used in a calc clause, a new component of type date is added to the dataset.

The operator can be applied also Data Sets; the result Data Set has the same Identifier, Measure and Attribute
Components as the operand Data Set.

Examples

Given the dataset DS_1:

Input DS_1 (see structure)

Id_1 Me_1

G 2019-01-01

H 2019-07-01

T 2020-12-31

Example 1

DS_r:= DS_1[calc Me_2 := dateadd(Me_1, 2, "M")];

results in (see structure):

DS_r

Id_1 Me_1 Me_2

G 2019-01-01 2019-03-01

H 2019-07-01 2019-09-01

T 2020-12-31 2021-02-28

Example 2

dateadd (2021-11-04, -3, “W”) ;

returns 2021-10-14.

Extract time period from a date: getyear, getmonth, dayofmonth, dayofyear

Syntax

{getyear | getmonth | dayofmonth | dayofyear}¹ (op)

Input parameters

op the input date/time period

Reference Manual

230

https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Time%20operators/Add%20time%20unit%20to%20date/examples/ds_1.json
https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Time%20operators/Add%20time%20unit%20to%20date/examples/ex_1.json

Examples of valid syntaxes

getyear (2022Q1)
dayofyear (2020-12-14)
ds2 := ds1[calc Me2 := dayofmonth(Me1)]

Semantics for scalar operations

The operator getyear returns the year of the given date/time period. The operator getmonth returns the month of the
given date/time period (between 1 and 12). The operator dayofmonth returns the ordinal day within the month
(between 1 and 31). The operator dayofyear returns the ordinal day within the year (between 1 and 366).

Input parameters type

op:

component<time>
| time

Result type

result

component<integer>
| integer

Additional Constraints

None.

Behaviour

The scalar version of this operators takes as input one date or time_period value and returns a integer value
corresponding to the specified time period.

In the component version, that can be used in a calc clause, a new component of type integer is added to the
dataset.

Examples

Given the dataset DS_1:

Input DS_1 (see structure)

Id_1 Me_1

G 2019-01-01

H 2019-07-01

T 2020-12-31

Example 1

DS_r:= DS_1[calc Me_2 := getmonth(Me_1)];

results in (see structure):

DS_r

Id_1 Me_1 Me_2

G 2019-01-01 1

H 2019-07-01 7

Reference Manual

231

https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Time%20operators/Extract%20time%20period/examples/ds_1.json
https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Time%20operators/Extract%20time%20period/examples/ex_1.json

T 2020-12-31 12

Example 2

datediff (2021Q2, 2021-11-04);

returns 127.

Number of days to duration: daytoyear, daytomonth

Syntax

{daytoyear | daytomonth }¹ (op)

Input parameters

op an integer representing the number of days to
transform

Examples of valid syntaxes

daytoyear (422)
daytomonth (146)
ds2 := ds1[calc Me2 := daytomonth(Me1)]

Semantics for scalar operations

The operator daytoyear returns a duration having the following mask: PYYDDDD. The operator daytomonth returns
a duration having the following mask: PMMDDD.

Input parameters type

op:

component<integer>
| integer

Result type

result

component<duration>
| duration

Additional Constraints

None.

Behaviour

The scalar version of the daytoyear operator takes as input an integer representing t he number of days and returns
the corresponding number of years and days; according to ISO 8601 Y = 365D.

The scalar version of the daytomonth operator takes as input an integer representing the numberoof days and
returns the corresponding number of months and days; according to ISO 8601 M = 30D.

In the component version, that can be used in a calc clause, a new component of type duration is added to the
dataset.

Reference Manual

232

Examples

Given the dataset DS_1:

Input DS_1 (see structure)

Id_1 Me_1

G 240

H 724

T 1056

Example 1

DS_r:= DS_1[calc Me_2 := daytoyear(Me_1)];

results in (see structure):

DS_r

Id_1 Me_1 Me_2

G 240 P0Y240D

G 724 P1Y359D

T 1056 P2Y326D

Example 2

DS_r:= DS_1[calc Me_2 := daytomonth(Me_1)];

results in (see structure):

DS_r

Id_1 Me_1 Me_2

G 240 P8M0D

G 724 P24M4D

T 1056 P35M6D

Example 2

daytoyear (782);

returns P2Y52D.

Example 3

daytomonth (134);

returns P4M14D.

Duration to number of days: yeartoday, monthtoday

Syntax

yeartoday (yearDuration)

Reference Manual

233

https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Time%20operators/Number%20days%20to%20duration/examples/ds_1.json
https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Time%20operators/Number%20days%20to%20duration/examples/ex_1.json
https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Time%20operators/Number%20days%20to%20duration/examples/ex_2.json

monthtoday (monthDuration)

Input parameters

yearDuration a duration having the following mask: PYYDDDD

monthDuration a duration having the following mask: PMMDDD

Examples of valid syntaxes

yeartoday (P1Y)
monthtoday (P3M)
ds2 := ds1[calc Me2 := yeartoday(Me1)]

Semantics for scalar operations

The operators return an integer representing the number of days corresponding

to the given duration.

Input parameters type

op:

component<duration>
| duration

Result type

result

component<integer>
| integer

Additional Constraints

None.

Behaviour

The scalar version of the yeartoday operator takes as input a duration having the following mask: PYYDDDD;
returns the corresponding number of years and days (according to ISO 8601 Y = 365D).

The scalar version of the monthtoday operator takes as input a duration having the following mask: PMMDDD;
returns the corresponding number of months and days; according to ISO 8601 M = 30D).

In the component version, that can be used in a calc clause, a new component of type integer is added to the
dataset.

Examples

Given the dataset DS_1:

Input DS_1 (see structure)

Id_1 Me_1

G P2Y230D

H P1Y23D

T P3Y152D

Reference Manual

234

https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Time%20operators/Duration%20to%20number%20days/examples/ds_1.json

Example 1

DS_r:= DS_1[calc Me_2 := yeartoday (Me_1)];

results in (see structure):

DS_r

Id_1 Me_1 Me_2

G 240 P0Y240D

G 724 P1Y359D

T 1056 P2Y326D

Example 2

yeartoday (P1Y20D);

returns 385.

Example 3

monthtoday (P3M10D);

returns 100.

VTL-ML - Set Operators

Union: union

Syntax

union (dsList)

dsList ::= ds { , ds }*

Input parameters

dsList the list of Data Sets in the union

Examples of valid syntaxes

union (ds2, ds3)

Semantics for scalar operations

This operator does not perform scalar operations.

Input parameters type

ds

dataset

Result type

result

dataset

Reference Manual

235

https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Time%20operators/Duration%20to%20number%20days/examples/ex_1.json

Additional Constraints

All the Data Sets in dsList have the same Identifier, Measure and Attribute Components.

Behaviour

The union operator implements the union of functions (i.e., Data Sets). The resulting Data Set has the same
Identifier, Measure and Attribute Components of the operand Data Sets specified in the dsList, and contains the Data
Points belonging to any of the operand Data Sets.

The operand Data Sets can contain Data Points having the same values of the Identifiers. To avoid duplications of
Data Points in the resulting Data Set, those Data Points are filtered by choosing the Data Point belonging to the left
most operand Data Set. For instance, let’s assume that in union (ds1, ds2) the operand ds1 contains a Data Point
dp1 and the operand ds2 contains a Data Point dp2 such that dp1 has the same Identifiers values of dp2, then the
resulting Data Set contains dp1 only.

The operator has the typical behaviour of the “Behaviour of the Set operators” (see the section “Typical behaviours of
the ML Operators”).

The automatic Attribute propagation is not applied.

Examples

Given the operand datasets DS_1, DS_2 and DS_3:

Input DS_1 (see structure)

Id_1 Id_2 Id_3 Id_4 Me_1

2012 B Total Total 5

2012 G Total Total 2

2012 F Total Total 3

Input DS_2 (see structure)

Id_1 Id_2 Id_3 Id_4 Me_1

2012 N Total Total 23

2012 S Total Total 5

Input DS_3 (see structure)

Id_1 Id_2 Id_3 Id_4 Me_1

2012 B Total Total 23

2012 S Total Total 5

Example 1

DS_r := union(DS_1, DS_2);

results in (see structure):

DS_r

Id_1 Id_2 Id_3 Id_4 Me_1

2012 B Total Total 5

2012 G Total Total 2

2012 F Total Total 3

2012 N Total Total 23

2012 S Total Total 5

Reference Manual

236

https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Set%20operators/Union/examples/ds_1.json
https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Set%20operators/Union/examples/ds_2.json
https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Set%20operators/Union/examples/ds_3.json
https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Set%20operators/Union/examples/ex_1.json

Example 2

DS_r := union (DS_1, DS_3);

results in (see structure):

DS_r

Id_1 Id_2 Id_3 Id_4 Me_1

2012 B Total Total 5

2012 G Total Total 2

2012 F Total Total 3

2012 S Total Total 5

Intersection: interesect

Syntax

intersect (dsList)

dsList ::= ds { , ds }*

Input parameters

dsList the list of Data Sets in the intersection

Examples of valid syntaxes

intersect (ds2, ds3)

Semantics for scalar operations

This operator cannot be applied to scalar values.

Input parameters type

ds

dataset

Result type

result

dataset

Additional Constraints

All the Data Sets in dsList have the same Identifier, Measure and Attribute Components.

Behavior

The intersect operator implements the intersection of functions (i.e., Data Sets). The resulting Data Set has the
same Identifier, Measure and Attribute Components of the operand Data Sets specified in the dsList, and contains
the Data Points belonging to all the operand Data Sets.

The operand Data Sets can contain Data Points having the same values of the Identifiers. To avoid duplications of
Data Points in the resulting Data Set, those Data Points are filtered by choosing the Data Point belonging to the
leftmost operand Data Set. For instance, let’s assume that in intersect (ds1, ds2) the operand ds1 contains a Data

Reference Manual

237

https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Set%20operators/Union/examples/ex_2.json

Point dp1 and the operand ds2 contains a Data Point dp2, such that dp1 has the same Identifiers values of dp2, then
the resulting Data Set contains dp1 only.

The operator has the typical behaviour of the “Behaviour of the Set operators” (see the section “Typical behaviours of
the ML Operators”).

The automatic Attribute propagation is not applied.

Examples

Given the operand datasets DS_1 and DS_2:

Input DS_1 (see structure)

Id_1 Id_2 Id_3 Id_4 Me_1

2012 B Total Total 1

2012 G Total Total 2

2012 F Total Total 3

Input DS_2 (see structure)

Id_1 Id_2 Id_3 Id_4 Me_1

2011 B Total Total 10

2012 G Total Total 2

2012 M Total Total 40

Example 1

DS_r := intersect(DS_1, DS_2);

results in (see structure):

DS_r

Id_1 Id_2 Id_3 Id_4 Me_1

2012 G Total Total 2

Set difference: setdiff

Syntax

setdiff (ds1, ds2)

Input parameters

ds1 the first Data Set in the difference (the minuend)

ds2 the second Data Set in the difference (the subtrahend)

Examples of valid syntaxes

setdiff (ds2, ds3)

Semantics for scalar operations

This operator cannot be applied to scalar values.

Reference Manual

238

https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Set%20operators/Intersection/examples/ds_1.json
https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Set%20operators/Intersection/examples/ds_2.json
https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Set%20operators/Intersection/examples/ex_1.json

Input parameters type

ds1, ds2

dataset

Result type

result

dataset

Additional Constraints

The operand Data Sets have the same Identifier, Measure and Attribute Components.

Behavior

The operator implements the set difference of functions (i.e. Data Sets), interpreting the Data Points of the input Data
Sets as the elements belonging to the operand sets, the minuend and the subtrahend, respectively. The operator
returns one single Data Set, with the same Identifier, Measure and Attribute Components as the operand Data Sets,
containing the Data Points that appear in the first Data Set but not in the second. In other words, for setdiff (ds1,
ds2), the resulting Dataset contains all the data points Data Point dp1 of the operand ds1, such that there is no Data
Point dp2 of ds2 having the same values for homonym Identifier Components.

The operator has the typical behaviour of the “Behaviour of the Set operators” (see the section “Typical behaviours of
the ML Operators”).

The automatic Attribute propagation is not applied.

Examples

Given the operand datasets DS_1, DS_2, DS_3 and DS_4:

Input DS_1 (see structure)

Id_1 Id_2 Id_3 Id_4 Me_1

2012 B Total Total 10

2012 G Total Total 20

2012 F Total Total 30

2012 M Total Total 40

2012 I Total Total 50

2012 S Total Total 60

Input DS_2 (see structure)

Id_1 Id_2 Id_3 Id_4 Me_1

2011 B Total Total 10

2012 G Total Total 20

2012 F Total Total 30

2012 M Total Total 40

2012 I Total Total 50

2012 S Total Total 60

Input DS_3 (see structure)

Id_1 Id_2 Id_3 Me_1

R M 2011 7

R F 2011 10

Reference Manual

239

https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Set%20operators/Set%20difference/examples/ds_1.json
https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Set%20operators/Set%20difference/examples/ds_2.json
https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Set%20operators/Set%20difference/examples/ds_3.json

R T 2011 12

Input DS_4 (see structure)

Id_1 Id_2 Id_3 Me_1

R M 2011 7

R F 2011 10

Example 1

DS_r := setdiff (DS_1, DS_2);

results in (see structure):

DS_r

Id_1 Id_2 Id_3 Id_4 Me_1

2012 B Total Total 10.0

Example 2

DS_r := setdiff (DS_3, DS_4);

results in (see structure):

DS_r

Id_1 Id_2 Id_3 Me_1

R T 2011 12

Symmetric difference: symdiff

Syntax

symdiff (ds1, ds2)

Input parameters

ds1 the first Data Set in the difference

ds2 the second Data Set in the difference

Semantics for scalar operations

This operator cannot be applied to scalar values.

Input parameters type

ds1, ds2

dataset

Result type

result

dataset

Reference Manual

240

https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Set%20operators/Set%20difference/examples/ds_4.json
https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Set%20operators/Set%20difference/examples/ex_1.json
https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Set%20operators/Set%20difference/examples/ex_2.json

Additional Constraints

The operand Data Sets have the same Identifier, Measure and Attribute Components.

Behaviour

The operator implements the symmetric set difference between functions (i.e. Data Sets), interpreting the Data
Points of the input Data Sets as the elements in the operand Sets. The operator returns one Data Set, with the same
Identifier, Measure and Attribute Components as the operand Data Sets, containing the Data Points that appear in
the first Data Set but not in the second and the Data Points that appear in the second Data Set but not in the first
one.

Data Points are compared to one another by Identifier Components. For symdiff (ds1, ds2), the resulting Data Set
contains all the Data Points dp1 contained in ds1 for which there is no Data Point dp2 in ds2 with the same values for
homonym Identifier components and all the Data Points dp2 contained in ds2 for which there is no Data Point dp1 in
ds1 with the same values for homonym Identifier Components.

The operator has the typical behaviour of the “Behaviour of the Set operators” (see the section “Typical behaviours of
the ML Operators”).

The automatic Attribute propagation is not applied.

Examples

Given the operand datasets DS_1 and DS_2:

Input DS_1 (see structure)

Id_1 Id_2 Id_3 Id_4 Me_1

2012 B Total Total 1

2012 G Total Total 2

2012 F Total Total 3

2012 M Total Total 4

2012 I Total Total 5

2012 S Total Total 6

Input DS_2 (see structure)

Id_1 Id_2 Id_3 Id_4 Me_1

2011 B Total Total 1

2012 G Total Total 2

2012 F Total Total 3

2012 M Total Total 4

2012 I Total Total 5

2012 S Total Total 6

Example 1

DS_r := symdiff (DS_1, DS_2);

results in (see structure):

DS_r

Id_1 Id_2 Id_3 Id_4 Me_1

2012 B Total Total 1.0

Reference Manual

241

https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Set%20operators/Symmetric%20difference/examples/ds_1.json
https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Set%20operators/Symmetric%20difference/examples/ds_2.json
https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Set%20operators/Symmetric%20difference/examples/ex_1.json

2011 B Total Total 1.0

VTL-ML - Hierarchical aggregation

Hierarchical roll-up: hierarchy

Syntax

hierarchy (op , hr { condition condComp { , condComp }* } { rule ruleComp } { mode } { input } { output })

mode ::= non_null | non_zero | partial_null | partial_zero | always_null | always_zero

input ::= dataset | rule | rule_priority

output ::= computed | all

Input parameters

op the operand Data Set

hr the hierarchical ruleset to be applied

condComp
condComp is a Component of op to be associated (in
positional order) to the
conditioning Value Domains or Variables defined in hr
(if any)

ruleComp
ruleComp is the Identifier of op to be associated to the
rule Value Domain or Variable
defined in hr

mode
this parameter specifies how to treat the possible
missing Data Points corresponding to
the Code Items in the right side of a rule and which
Data Points are produced in output.
The meaning of the possible values of the parameter is
explained below.

input
this parameter specifies the source of the values used
as input of the hierarchical rules.
The meaning of the possible values of the parameter is
explained below.

output
this parameter specifies the content of the resulting
Data Set.
The meaning of the possible values of the parameter is
explained below.

Examples of valid syntaxes

hierarchy (DS1, HR1 rule Id_1 non_null all)
hierarchy (DS2, HR2 condition Comp_1, Comp_2 rule Id_3 non_zero rule computed)

Semantics for scalar operations

This operator cannot be applied to scalar values.

Input parameters type

op

Reference Manual

242

dataset { measure<number> _ }

hr

name<hierarchical>

condComp

name<component>

ruleComp

name<identifier>

Result type

result

dataset { measure<number> _ }

Additional Constraints

If hr is defined on Value Domains then it is mandatory to specify the condition (if any) and the rule parameters.
Moreover, the Components specified as condComp and ruleComp must belong to the operand op and must take
values on the Value Domains corresponding, in positional order, to the ones specified in the condition and rule
parameter of hr.

If hr is defined on Variables, the specification of condComp and ruleComp is not needed, but they can be specified
all the same if it is desired to show explicitly in the invocation which are the involved Components: in this case, the
condComp and ruleComp must be the same and in the same order as the Variables specified in in the condition and
rule signatures of hr.

Behaviour

The hierarchy operator applies the rules of hr to op as specified in the parameters. The operator returns a Data Set
with the same Identifiers and the same Measure as op. The Attribute propagation rule is applied on the groups of
Data Points which contribute to the same Data Points of the result.

The behaviours relevant to the different options of the input parameters are the following.

First, the parameter input is considered to determine the source of the Data Points used as input of the Hierarchy.
The possible options of the parameter input and the corresponding behaviours are the following:

dataset
For each Rule of the Ruleset and for each item on the
right hand side of the Rule, the
operator takes the input Data Points exclusively from
the operand op.

rule
For each Rule of the Ruleset and for each item on the
right-hand side of the Rule:
· if the item is not defined as the result (left-hand side)
of another Rule, the current Rule
takes the input Data Points from the operand op
· if the item is defined as the result of another Rule, the
current Rule takes the input
Data Points from the computed output of such other
Rule

Reference Manual

243

rule_priority
For each Rule of the Ruleset and for each item on the
right-hand side of the Rule:
· if the item is not defined as the result (left-hand side)
of another rule, the current Rule
takes the input Data Points from the operand op
· if the item is defined as the result of another Rule,
then:
> if an expected input Data Point exists in the
computed output of such other Rule
and its Measure is not NULL, then the current Rule
takes such Data Point;
> if an expected input Data Point does not exist in the
computed output of such
other Rule or its measure is NULL, then the current
Rule takes the Data Point
from op (if any) having the same values of the
Identifiers;

if the parameter input is not specified then it is assumed to be rule.

Then the parameter mode is considered, to determine the behaviour for missing Data Points and for the Data Points
to be produced in the output. The possible options of the parameter mode and the corresponding behaviours are the
following:

non_null
the result Data Point is produced when its computed
Measure value is not NULL (i.e.,
when no Data Point corresponding to the Code Items of
the right side of the rule is
missing or has NULL Measure value); in the
calculation, the possible missing Data
Points corresponding to the Code Items of the right side
of the rule are considered
existing and having a Measure value equal to NULL;

non_zero
the result Data Point is produced when its computed
Measure value is not equal to
0 (zero); the possible missing Data Points
corresponding to the Code Items of the
right side of the rule are considered existing and having
a Measure value equal to 0;

partial_null
the result Data Point is produced if at least one Data
Point corresponding to the
Code Items of the right side of the rule is found
(whichever is its Measure value);
the possible missing Data Points corresponding to the
Code Items of the right side
of the rule are considered existing and having a NULL
Measure value;

partial_zero
the result Data Point is produced if at least one Data
Point corresponding to the
Code Items of the right side of the rule is found
(whichever is its Measure value);
the possible missing Data Points corresponding to the
Code Items of the right side
of the rule are considered existing and having a
Measure value equal to 0 (zero);

Reference Manual

244

always_null
the result Data Point is produced in any case; the
possible missing Data Points
corresponding to the Code Items of the right side of the
rule are considered existing
and having a Measure value equal to NULL;

always_zero
the result Data Point is produced in any case; the
possible missing Data Points
corresponding to the Code Items of the right side of the
rule are considered existing
and having a Measure value equal to 0 (zero);

If the parameter mode is not specified, then it is assumed to be non_null.

The following table summarizes the behaviour of the options of the parameter “mode”:

OPTION of the
MODE

PARAMETER:

Missing Data
Points are

considered:
Null Data Points
are considered:

Condition for
evaluating the rule

Returned Data
Points

Non_null NULL NULL If all the involved
Data Points are not
NULL

Only not NULL Data
Points (Zeros are
returned too)

Non_zero Zero NULL If at least one the
involved Data Points
is <> zero

Only not zero Data
Points (NULL are
returned too)

Partial_null NULL NULL If at least the
involved Data Points
is not NULL

Data Points of any
value (NULL or not
NULL and zero too)

Partial_zero Zero NULL If at least the
involved Data Points
is not NULL

Data Points of any
value (NULL or not
NULL and zero too)

Always_null NULL NULL Always Data Points of any
value (NULL or not
NULL and zero too)

Always_zero Zero NULL Always Data Points of any
value (NULL or not
NULL and zero too)

Finally the parameter output is considered, to determine the content of the resulting Data Set. The possible options
of the parameter output and the corresponding behaviours are the following:

computed
the resulting Data Set contains only the set of Data
Points computed according to
the Ruleset

all
the resulting Data Set contains the union between the
set of Data Points “R” computed
according to the Ruleset and the set of Data Points of
op that have different
combinations of values for the Identifiers. In other
words, the result is the outcome
of the following (virtual)expression: union (setdiff (op ,
R) , R)

If the parameter output is not specified then it is assumed to be computed.

Examples

Given the following hierarchical ruleset:

Reference Manual

245

define hierarchical ruleset HR_1 (valuedomain rule VD_1) is
 A = J + K + L
 ; B = M + N + O
 ; C = P + Q
 ; D = R + S
 ; E = T + U + V
 ; F = Y + W + Z
 ; G = B + C
 ; H = D + E
 ; I = D + G
end hierarchical ruleset;

And given the operand dataset DS_1 (where At_1 is viral and the propagation rule says that the alphabetic order
prevails the NULL prevails on the alphabetic characters and the Attribute value for missing Data Points is assumed
as NULL):

Input DS_1 (see structure)

Id_1 Id_2 Me_1 At_1

2010 M 2 Dx

2010 N 5 Pz

2010 O 4 Pz

2010 P 7 Pz

2010 Q -7 Pz

2010 S 3 Ay

2010 T 9 Bq

2010 U Nj

2010 V 6 Ko

Example 1

DS_r := hierarchy (DS_1, HR_1 rule Id_2 non_null);

results in (see structure):

DS_r

Id_1 Id_2 Me_1 At_1

2010 B 11 Dx

2010 C 0 Pz

2010 G 11 Dx

Example 2

DS_r := hierarchy (DS_1, HR_1 rule Id_2 non_zero);

results in (see structure):

DS_r

Id_1 Id_2 Me_1 At_1

2010 B 11 Dx

Reference Manual

246

https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Hierarchical%20aggregation/Hierarchical%20roll-up/examples/ds_1.json
https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Hierarchical%20aggregation/Hierarchical%20roll-up/examples/ex_1.json
https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Hierarchical%20aggregation/Hierarchical%20roll-up/examples/ex_2.json

2010 D 3

2010 E Bq

2010 G 11 Dx

2010 H

2010 I 14

Example 3

DS_r := hierarchy (DS_1, HR_1 rule Id_2 partial_null);

results in (see structure):

DS_r

Id_1 Id_2 Me_1 At_1

2010 B 11 Dx

2010 C 0 Pz

2010 D

2010 E Bq

2010 G 11 Dx

2010 H

2010 I

VTL-ML - Aggregate and Analytic operators

The following table lists the operators that can be invoked in the Aggregate or in the Analytic invocations described
below and their main characteristics.

Operator Description
Allowed

invocations
Type of resulting

Measure
Type of operand

Measures

count number of Data
Points

Aggregate Analytic integer any

min minimum value of a
set of values

Aggregate Analytic any any

max maximum value of a
set of values

Aggregate Analytic any any

median median value of a
set of numbers

Aggregate Analytic number number

sum sum of a set of
numbers

Aggregate Analytic number number

avg average value of a
set of numbers

Aggregate Analytic number number

stddev_pop population standard
deviation of a set of
numbers

Aggregate Analytic number number

stddev_samp sample standard
deviation of a set of
numbers

Aggregate Analytic number number

Reference Manual

247

https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Hierarchical%20aggregation/Hierarchical%20roll-up/examples/ex_3.json

var_pop population variance
of a set of numbers

Aggregate Analytic number number

var_samp sample variance of
a set of numbers

Aggregate Analytic number number

first_value first value in an
ordered set of
values

Analytic any any

last_value last value in an
ordered set of
values

Analytic any any

lag in an ordered set of
Data Points it
returns the value(s)
taken from a Data
Point at a given
physical offset prior
to the current Data
Point

Analytic any any

lead in an ordered set of
Data Points it
returns the value(s)
taken from a Data
Point at a given
physical offset
beyond the current
Data Point

Analytic any any

rank rank (order number)
of a Data Point in an
ordered set of Data
Points

Analytic integer any

ratio_to_report ratio of a value to
the sum of a set of
values

Analytic number number

Aggregate invocation

Syntax

• In a Data Set expression:

aggregateOperator (firstOperand { , additionalOperand }* { groupingClause })

• In a Component expression within an aggr clause:

aggregateOperator (firstOperand { , additionalOperand }*) { groupingClause }

aggregateOperator ::= avg | count | max | median | min | stddev_pop | stddev_samp | sum | var_pop |
var_samp

groupingClause ::=

{ group by groupingId {, groupingId}*
| group except groupingId {, groupingId}*
| group all conversionExpr }¹
{ having havingCondition }

Input parameters

Reference Manual

248

aggregateOperator the keyword of the aggregate operator to invoke (e.g.,
avg, count, max…)

firstOperand
the first operand of the invoked aggregate operator (a
Data Set for an invocation
at Data Set level or a Component of the input Data Set
for an invocation at
Component level within an aggr operator or an aggr
clause in a join operation)

additionalOperand
an additional operand (if any) of the invoked operator.
The various operators
can have a different number of parameters. The
number of parameters, their
types and if they are mandatory or optional depend on
the invoked operator

groupingClause
the following alternative grouping options:
· group by: the Data Points are grouped by the values
of the specified Identifiers
(groupingId). The Identifiers not specified are dropped
in the result.
· group except: the Data Points are grouped by the
values of the Identifiers not
specified as groupingId. The Identifiers specified as
groupingId are
dropped in the result.
· group all: converts the values of an Identifier
Component using conversionExpr
and keeps all the resulting Identifiers.

groupingId
Identifier Component to be kept (in the group by
clause) or dropped (in the
group except clause).

conversionExpr
specifies a conversion operator (e.g., time_agg) to
convert data from finer to
coarser granularity. The conversion operator is applied
on an Identifier of the
operand Data Set op.

Reference Manual

249

havingCondition
a condition (boolean expression) at component level,
having only Components of
the input Data Sets as operands (and possibly
constants), to be fulfilled by the
groups of Data Points: only groups for which
havingCondition evaluates to TRUE
appear in the result. The havingCondition refers to the
groups specified through
the groupingClause, therefore it must invoke aggregate
operators (e.g. avg,
count, max, …, see also the corresponding sections).
A correct example
of havingCondition is: max(obs_value) < 1000, while
the condition
obs_value < 1000 is not a right havingCondition,
because it refers to the values
of single Data Points and not to the groups. The count
operator is used in a
havingCondition without parameters, e.g.:
sum (ds group by id1 having count () >= 10) .

Examples of valid syntaxes

avg (DS_1)
avg (DS_1 group by Id_1, Id_2)
avg (DS_1 group except Id_1, Id_2)
avg (DS_1 group all time_agg ("Q"))

Semantics for scalar operations

The aggregate operators cannot be applied to scalar values.

Input parameters type

firstOperand

dataset
| component

additionalOperand

see the type of the additional parameter (if any) of the invoked
aggregateOperator. The aggregate operators and their parameters are
described in the following sections.

groupingId

name < identifier >

conversionExpr

identifier

havingCondition

component < boolean >

Result type

result

dataset
| component

Reference Manual

250

Additional Constraints

The Aggregate invocation cannot be nested in other Aggregate or Analytic invocations.

The aggregate operations at component level can be invoked within the aggr clause, both as part of a join operator
and the aggr operator (see the parameter aggrExpr of those operators).

The basic scalar types of firstOperand and additionalOperand (if any) must be compliant with the specific basic
scalar types required by the invoked operator (the required basic scalar types are described in the table at the
beginning of this chapter and in the sections of the various operators below).

The conversionExpr parameter applies just one conversion operator to just one Identifier belonging to the input Data
Set. The basic scalar type of the Identifier must be compatible with the basic scalar type of the conversion operator.

If the grouping clause is omitted, then all the input Data Points are aggregated in a single group and the clause
returns a Data Set that contains a single Data Point and has no Identifiers.

Behaviour

The aggregateOperator is applied as usual to all the measures of the firstOperand Data Set (if invoked at Data Set
level) or to the firstOperand Component of the input Data Set (if invoked at Component level). In both cases, the
operator calculates the required aggregated values for groups of Data Points of the input Data Set. The groups of
Data Points to be aggregated are specified through the groupingClause, which allows the following alternative
options.

group by
the Data Points are grouped by the values of the
specified Identifiers.
The Identifiers not specified are dropped in the result.

group except
the Data Points are grouped by the values of the
Identifiers not specified
in the clause. The specified Identifiers are dropped in
the result.

group all converts an Identifier Component using conversionExpr
and keeps all the Identifiers.

The having clause is used to filter groups in the result by means of an aggregate condition evaluated on the single
groups (for example the minimum number of rows in the group).

If no grouping clause is specified, then all the input Data Points are aggregated in a single group and the operator
returns a Data Set that contains a single Data Point and has no Identifiers.

For the invocation at Data Set level, the resulting Data Set has the same Measures as the operand. For the
invocation at Component level, the resulting Data Set has the Measures explicitly calculated (all the other Measures
are dropped because no aggregation behaviour is specified for them).

For invocation at Data Set level, the Attribute propagation rule is applied. For invocation at Component level, the
Attributes calculated within the aggr clause are maintained in the result; for all the other Attributes that are defined as
viral, the Attribute propagation rule is applied (for the semantics, see the Attribute Propagation Rule section in the
User Manual).

As mentioned, the Aggregate invocation at component level can be done within the aggr clause, both as part of a
Join operator and the aggr operator (see the parameter aggrExpr of those operators), therefore, for a better
comprehension fo the behaviour at Component level, see also those operators.

Examples

Given the operand datasets DS_1 and DS_2:

Input DS_1 (see structure)

Id_1 Id_2 Id_3 Me_1 At_1

2010 E XX 20

2010 B XX 1 H

Reference Manual

251

https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Aggregate%20and%20Analytic%20operators/Aggregate%20invocation/examples/ds_1.json

2010 R XX 1 A

2010 F YY 23

2011 E XX 20 P

2011 B ZZ 1 N

2011 R YY -1 P

2011 F XX 20 Z

2012 L ZZ 40 P

2012 E YY 30 P

Input DS_2 (see structure)

Id_1 Id_2 Id_3 Me_1 At_1

2010 E XX 20

2010 B XX 1 H

2010 R XX 1 A

2010 F YY 23

2011 E XX 20 P

2011 B ZZ 1 N

2011 R YY -1 P

2011 F XX 20 Z

2012 L ZZ 40 P

2012 E YY 30 P

Example 1

DS_r := avg (DS_1 group by Id_1);

results in (see structure):

DS_r

Id_1 Me_1

2010 11.25

2011 10.0

2012 35.0

Example 2

DS_r := sum (DS_1 group by Id_1, Id_3);

results in (see structure):

DS_r

Id_1 Id_3 Me_1

2010 XX 22.0

2010 YY 23.0

Reference Manual

252

https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Aggregate%20and%20Analytic%20operators/Aggregate%20invocation/examples/ds_2.json
https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Aggregate%20and%20Analytic%20operators/Aggregate%20invocation/examples/ex_1.json
https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Aggregate%20and%20Analytic%20operators/Aggregate%20invocation/examples/ex_2.json

2011 XX 40.0

2011 ZZ 1.0

2011 YY -1.0

2012 ZZ 40.0

2012 YY 30.0

Example 3

DS_r := avg (DS_1);

results in (see structure):

DS_r

Me_1

15.5

Example 4

DS_r := DS_1 [aggr Me_2 := max (Me_1) , Me_3 := min (Me_1) group by Id_1];

results in (see structure):

DS_r

Id_1 Me_2 Me_3 At_1

2010 23 1

2011 20 -1 N

2012 40 30 P

Note: the first example can be rewritten equivalently in the following forms:

DS_r := avg (DS_1 group except Id_2, Id_3)

DS_r := avg (DS_1#Me_1 group by Id_1)

Analytic invocation

Syntax

analyticOperator (firstOperand { , additionalOperand }* over (analyticClause))

analyticOperator ::= avg | count | max | median | min | stddev_pop | stddev_samp | sum | var_pop |
var_samp | first_value | lag | last_value | lead | rank | ratio_to_report

analyticClause ::= { partitionClause } { orderClause } { windowClause }

partitionClause ::= partition by identifier { , identifier }*

orderClause ::= order by component { asc | desc } { , component { asc | desc } }*

windowClause ::= { data points | range }¹ between limitClause and limitClause

limitClause ::= { num preceding | num following | current data point | unbounded preceding |
unbounded following }¹

Input parameters

Reference Manual

253

https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Aggregate%20and%20Analytic%20operators/Aggregate%20invocation/examples/ex_3.json
https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Aggregate%20and%20Analytic%20operators/Aggregate%20invocation/examples/ex_4.json

analyticOperator the keyword of the analytic operator to invoke (e.g.,
avg, count, max…)

firstOperand
the first operand of the invoked analytic operator (a
Data Set for an invocation at
Data Set level or a Component of the input Data Set for
an invocation at
Component level within a calc operator or a calc
clause in a join operation)

additionalOperand
an additional operand (if any) of the invoked operator.
The various operators can
have a different number of parameters. The number of
parameters, their types
and if they are mandatory or optional depend on the
invoked operator

analyticClause clause that specifies the analytic behaviour

partitionClause
clause that specifies how to partition Data Points in
groups to be analysed
separately. The input Data Set is partitioned according
to the values of one or
more Identifier Components. If the clause is omitted,
then the Data Set is
partitioned by the Identifier Components that are not
specified in the orderClause.

orderClause
clause that specifies how to order the Data Points. The
input Data Set is ordered
according to the values of one or more Components, in
ascending order if asc is
specified, in descending order if desc is specified, by
default in ascending
order if the asc and desc keywords are omitted.

windowClause
clause that specifies how to apply a sliding window on
the ordered Data Points.
The keyword data points means that the sliding
window includes a certain
number of Data Points before and after the current
Data Point in the order given
by the orderClause. The keyword range means that the
sliding windows includes
all the Data Points whose values are in a certain range
in respect to the value,
for the current Data Point, of the Measure which the
analytic is applied to.

Reference Manual

254

limitCause
clause that can specify either the lower or the upper
boundaries of the sliding
window. Each boundary is specified in relationship
either to the whole partition
or to the current data point under analysis by using the
following keywords:

* unbounded preceding means that the sliding
window starts at the first Data
Point of the partition (it make sense only as the first
limit of the window)
* unbounded following indicates that the sliding
window ends at the last Data
Point of the partition (it makes sense only as the
second limit of the window)
* current data point specifies that the window starts or
ends at the current
Data Point.
* num preceding specifies either the number of data
points to consider
preceding the current data point in the order given by
the orderClause

(when data points is specified in the window clause),
or the maximum difference
to consider, as for the Measure which the analytic is
applied to, between the value
of the current Data Point and the generic other Data
Point (when range is
specified in the windows clause).
num following specifies either the number of data
points to consider following the
current data point in the order given by the orderClause
(when data points is
specified in the window clause), or the maximum
difference to consider, as for the
Measure which the analytic is applied to, between the
values of the generic other
Data Point and the current Data Point (when range is
specified in the windows
clause).
If the whole windowClause is omitted then the default is
data points between
unbounded preceding and unbounded following.

identifier an Identifier Component of the input Data Set

component a Component of the input Data Set

num a scalar number

Examples of valid syntaxes

sum (DS_1 over (partition by Id_1 order by Id_2))
sum (DS_1 over (order by Id_2))
avg (DS_1 over (order by Id_1 data points between 1 preceding and 1 following))
DS_1 [calc M1 := sum (Me_1 over (order by Id_1))]

Semantics for scalar operations

The analytic operators cannot be applied to scalar values.

Reference Manual

255

Input parameters type

firstOperand

dataset
| component

additionalOperand

see the type of the additional parameter (if any) of the invoked
aggregateOperator. The aggregate operators and their parameters are
described in the following sections.

groupingId

name < identifier >

conversionExpr

identifier

havingCondition

component < boolean >

Result type

result

dataset
| component

Additional Constraints

The analytic invocation cannot be nested in other Aggregate or Analytic invocations.

The analytic operations at component level can be invoked within the calc clause, both as part of a Join operator and
the calc operator (see the parameter calcExpr of those operators).

The basic scalar types of firstOperand and additionalOperand (if any) must be compliant with the specific basic
scalar types required by the invoked operator (the required basic scalar types are described in the table at the
beginning of this chapter and in the sections of the various operators below).

Behaviour

The analytic Operator is applied as usual to all the Measures of the input Data Set (if invoked at Data Set level) or to
the specified Component of the input Data Set (if invoked at Component level). In both cases, the operator calculates
the desired output values for each Data Point of the input Data Set.

The behaviour of the analytic operations can be procedurally described as follows:

• The Data Points of the input Data Set are first partitioned (according to partitionBy) and then ordered (according
to orderBy).

• The operation is performed for each Data Point (named “current Data Point”) of the input Data Set. For each
input Data Point, one output Data Point is returned, having the same values of the Identifiers. The analytic
operator is applied to a “window” which includes a set of Data Points of the input Data Set and returns the
values of the Measure(s) of the output Data Point.

• If windowClause is not specified, then the set of Data Points which contribute to the analytic operation is
the whole partition which the current Data Point belongs to

• If windowClause is specified, then the set of Data Points is the one specified by windowClause (see
windowsClause and LimitClause explained above).

For the invocation at Data Set level, the resulting Data Set has the same Measures as the input Data Set
firstOperand. For the invocation at Component level, the resulting Data Set has the Measures of the input Data Set
plus the Measures explicitly calculated through the calc clause.

Reference Manual

256

For the invocation at Data Set level, the Attribute propagation rule is applied. For invocation at Component level, the
Attributes calculated within the calc clause are maintained in the result; for all the other Attributes that are defined as
viral, the Attribute propagation rule is applied (for the semantics, see the Attribute Propagation Rule section in the
User Manual).

As mentioned, the Analytic invocation at component level can be done within the calc clause, both as part of a Join
operator and the calc operator (see the parameter aggrCalc of those operators), therefore, for a better
comprehension fo the behaviour at Component level, see also those operators.

Examples

Given the operand dataset DS_1:

Input DS_1 (see structure)

Id_1 Id_2 Id_3 Me_1

2010 E XX 5

2010 B XX -3

2010 R XX 9

2010 E YY 13

2011 E XX 11

2011 B ZZ 7

2011 E YY -1

2011 F XX 0

2012 L ZZ -2

2012 E YY 3

Example 1

DS_r := sum (DS_1 over (order by Id_1, Id_2, Id_3 data points between 1 preceding and 1 following));

results in (see structure):

DS_r

Id_1 Id_2 Id_3 Me_1

2010 B XX 2

2010 E XX 15

2010 E YY 27

2010 R XX 29

2011 B ZZ 27

2011 E XX 17

2011 E YY 10

2011 F XX 2

2012 E YY 1

2012 L ZZ 1

Reference Manual

257

https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Aggregate%20and%20Analytic%20operators/Analytic%20invocation/examples/ds_1.json
https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Aggregate%20and%20Analytic%20operators/Analytic%20invocation/examples/ex_1.json

Counting the number of data points: count

Syntax

• Aggregate syntax

in a Data Set expression count (dataset { groupingClause })

in a Component expression within an aggr clause count (component) { groupingClause }

in a Data Set expression count ()

• Analytic syntax

in a Data Set expression count (dataset over(analyticClause))

in a Component expression within a calc clause count (component over(analyticClause))

Input parameters

dataset the operand Data Set

component the operand Component

groupingClause see Aggregate invocation

analyticClause see Analytic invocation

Semantics for scalar operations

This operator cannot be applied to scalar values.

Input parameters type

dataset

dataset

component

component

Result type

result

dataset { measure<integer> int_var }
| component<integer>

Additional Constraints

None.

Behaviour

The operator returns the number of the input Data Points. For other details, see Aggregate and Analytic invocations.

Examples

Given the operand dataset DS_1:

Input DS_1 (see structure)

Id_1 Id_2 Id_3 Me_1

2011 A XX iii

Reference Manual

258

https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Aggregate%20and%20Analytic%20operators/Counting%20the%20number%20of%20data%20points/examples/ds_1.json

2011 A YY jjj

2011 B YY iii

2012 A XX kkk

2012 B YY iii

Example 1

DS_r := count (DS_1 group by Id_1);

results in (see structure):

DS_r

Id_1 int_var

2011 3

2012 2

Example 2

DS_r := count (DS_1 group by Id_1 having count() > 2);

results in (see structure):

DS_r

Id_1 int_var

2011 3

Minimun value: min

Syntax

• Aggregate syntax

in a Data Set expression min (dataset { groupingClause })

in a Component expression within an aggr clause min (component) { groupingClause }

• Analytic syntax

in a Data Set expression min (dataset over (analyticClause))

in a Component expression within a calc clause min (component over (analyticClause))

Input parameters

dataset the operand Data Set

component the operand Component

groupingClause see Aggregate invocation

analyticClause see Analytic invocation

Semantics for scalar operations

This operator cannot be applied to scalar values.

Reference Manual

259

https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Aggregate%20and%20Analytic%20operators/Counting%20the%20number%20of%20data%20points/examples/ex_1.json
https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Aggregate%20and%20Analytic%20operators/Counting%20the%20number%20of%20data%20points/examples/ex_2.json

Input parameters type

dataset

dataset

component

component

Result type

result

dataset
| component

Additional Constraints

None.

Behaviour

The operator returns the minimum value of the input values. For other details, see Aggregate and Analytic
invocations.

Examples

Given the operand dataset DS_1:

Input DS_1 (see structure)

Id_1 Id_2 Id_3 Me_1

2011 A XX 3

2011 A YY 5

2011 B YY 7

2012 A XX 2

2012 B YY 4

Example 1

DS_r := min (DS_1 group by Id_1);

results in (see structure):

DS_r

Id_1 Me_1

2011 3

2012 2

Maximum value: max

Syntax

• Aggregate syntax

in a Data Set expression max (dataset { groupingClause })

Reference Manual

260

https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Aggregate%20and%20Analytic%20operators/Minimun%20value/examples/ds_1.json
https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Aggregate%20and%20Analytic%20operators/Minimun%20value/examples/ex_1.json

in a Component expression within an aggr clause max (component) { groupingClause }

• Analytic syntax

in a Data Set expression max (dataset over (analyticClause))

in a Component expression within a calc clause max (component over (analyticClause))

Input parameters

dataset the operand Data Set

component the operand Component

groupingClause see Aggregate invocation

analyticClause see Analytic invocation

Semantics for scalar operations

This operator cannot be applied to scalar values.

Input parameters type

dataset

dataset

component

component

Result type

result

dataset
| component

Additional Constraints

None.

Behaviour

The operator returns the maximum of the input values. For other details, see Aggregate and Analytic invocations.

Examples

Given the operand dataset DS_1:

Input DS_1 (see structure)

Id_1 Id_2 Id_3 Me_1

2011 A XX 3

2011 A YY 5

2011 B YY 7

2012 A XX 2

2012 B YY 4

Reference Manual

261

https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Aggregate%20and%20Analytic%20operators/Maximum%20value/examples/ds_1.json

Example 1

DS_r := max (DS_1 group by Id_1);

results in (see structure):

DS_r

Id_1 Me_1

2011 7

2012 4

Median value: median

Syntax

• Aggregate syntax

in a Data Set expression median (dataset { groupingClause })

in a Component expression within an aggr clause median (component) { groupingClause }

• Analytic syntax

in a Data Set expression median (dataset over (analyticClause))

in a Component expression within a calc clause median (component over (analyticClause))

Input parameters

dataset the operand Data Set

component the operand Component

groupingClause see Aggregate invocation

analyticClause see Analytic invocation

Semantics for scalar operations

This operator cannot be applied to scalar values.

Input parameters type

dataset

dataset { measure<number> _+ }

component

component<number>

Result type

result

dataset { measure<number> _+ }
| component<number>

Additional Constraints

None.

Reference Manual

262

https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Aggregate%20and%20Analytic%20operators/Maximum%20value/examples/ex_1.json

Behaviour

The operator returns the median value of the input values. For other details, see Aggregate and Analytic invocations.

Examples

Given the operand dataset DS_1:

Input DS_1 (see structure)

Id_1 Id_2 Id_3 Me_1

2011 A XX 3

2011 A YY 5

2011 B YY 7

2012 A XX 2

2012 B YY 4

Example 1

DS_r := median (DS_1 group by Id_1);

results in (see structure):

DS_r

Id_1 Me_1

2011 5.0

2012 3.0

Sum: sum

Syntax

• Aggregate syntax

in a Data Set expression sum (dataset { groupingClause })

in a Component expression within an aggr clause sum (component) { groupingClause }

• Analytic syntax

in a Data Set expression sum (dataset over (analyticClause))

in a Component expression within a calc clause sum (component over (analyticClause))

Input parameters

dataset the operand Data Set

component the operand Component

groupingClause see Aggregate invocation

analyticClause see Analytic invocation

Semantics for scalar operations

This operator cannot be applied to scalar values.

Reference Manual

263

https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Aggregate%20and%20Analytic%20operators/Median%20value/examples/ds_1.json
https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Aggregate%20and%20Analytic%20operators/Median%20value/examples/ex_1.json

Input parameters type

dataset

dataset { measure<number> _+ }

component

component<number>

Result type

result

dataset { measure<number> _+ }
| component<number>

Additional Constraints

None.

Behaviour

The operator returns the sum of the input values. For other details, see Aggregate and Analytic invocations.

Examples

Given the operand dataset DS_1:

Input DS_1 (see structure)

Id_1 Id_2 Id_3 Me_1

2011 A XX 3

2011 A YY 5

2011 B YY 7

2012 A XX 2

2012 B YY 4

Example 1

DS_r := sum (DS_1 group by Id_1);

results in (see structure):

DS_r

Id_1 Me_1

2011 15.0

2012 6.0

Average value: avg

Syntax

• Aggregate syntax

in a Data Set expression avg (dataset { groupingClause })

in a Component expression within an aggr clause avg (component) { groupingClause }

Reference Manual

264

https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Aggregate%20and%20Analytic%20operators/Sum/examples/ds_1.json
https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Aggregate%20and%20Analytic%20operators/Sum/examples/ex_1.json

• Analytic syntax

in a Data Set expression avg (dataset over (analyticClause))

in a Component expression within a calc clause avg (component over (analyticClause))

Input parameters

dataset the operand Data Set

component the operand Component

groupingClause see Aggregate invocation

analyticClause see Analytic invocation

Semantics for scalar operations

This operator cannot be applied to scalar values.

Input parameters type

dataset

dataset { measure<number> _+ }

component

component<number>

Result type

result

dataset { measure<number> _+ }
| component<number>

Additional Constraints

None.

Behaviour

The operator returns the average of the input values. For other details, see Aggregate and Analytic invocations.

Examples

Given the operand dataset DS_1:

Input DS_1 (see structure)

Id_1 Id_2 Id_3 Me_1

2011 A XX 3

2011 A YY 5

2011 B YY 7

2012 A XX 2

2012 B YY 4

Example 1

DS_r := avg (DS_1 group by Id_1);

Reference Manual

265

https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Aggregate%20and%20Analytic%20operators/Average%20value/examples/ds_1.json

results in (see structure):

DS_r

Id_1 Me_1

2011 5.0

2012 3.0

Population standard deviation: stddev_pop

Syntax

• Aggregate syntax

in a Data Set expression stddev_pop (dataset { groupingClause })

in a Component expression within an aggr clause stddev_pop (component) { groupingClause }

• Analytic syntax

in a Data Set expression stddev_pop (dataset over (analyticClause))

in a Component expression within a calc clause stddev_pop (component over (analyticClause))

Input parameters

dataset the operand Data Set

component the operand Component

groupingClause see Aggregate invocation

analyticClause see Analytic invocation

Semantics for scalar operations

This operator cannot be applied to scalar values.

Input parameters type

dataset

dataset { measure<number> _+ }

component

component<number>

Result type

result

dataset { measure<number> _+ }
| component<number>

Additional Constraints

None.

Behaviour

The operator returns the “population standard deviation” of the input values. For other details, see Aggregate and
Analytic invocations.

Reference Manual

266

https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Aggregate%20and%20Analytic%20operators/Average%20value/examples/ex_1.json

Examples

Given the operand dataset DS_1:

Input DS_1 (see structure)

Id_1 Id_2 Id_3 Me_1

2011 A XX 3

2011 A YY 5

2011 B YY 7

2012 A XX 2

2012 B YY 4

Example 1

DS_r := stddev_pop (DS_1 group by Id_1);

results in (see structure):

DS_r

Id_1 Me_1

2011 1.632993

2012 1.0

Sample standard deviation: stddev_samp

Syntax

• Aggregate syntax

in a Data Set expression stddev_samp (dataset { groupingClause })

in a Component expression within an aggr clause stddev_samp (component) { groupingClause }

• Analytic syntax

in a Data Set expression stddev_samp (dataset over (analyticClause))

in a Component expression within a calc clause stddev_samp (component over (analyticClause))

Input parameters

dataset the operand Data Set

component the operand Component

groupingClause see Aggregate invocation

analyticClause see Analytic invocation

Semantics for scalar operations

This operator cannot be applied to scalar values.

Input parameters type

dataset

Reference Manual

267

https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Aggregate%20and%20Analytic%20operators/Population%20standard%20deviation/examples/ds_1.json
https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Aggregate%20and%20Analytic%20operators/Population%20standard%20deviation/examples/ex_1.json

dataset { measure<number> _+ }

component

component<number>

Result type

result

dataset { measure<number> _+ }
| component<number>

Additional Constraints

None.

Behaviour

The operator returns the “sample standard deviation” of the input values. For other details, see Aggregate and
Analytic invocations.

Examples

Given the operand dataset DS_1:

Input DS_1 (see structure)

Id_1 Id_2 Id_3 Me_1

2011 A XX 3

2011 A YY 5

2011 B YY 7

2012 A XX 2

2012 B YY 4

Example 1

DS_r := stddev_samp (DS_1 group by Id_1);

results in (see structure):

DS_r

Id_1 Me_1

2011 2.0

2012 1.414214

Population variance: var_pop

Syntax

• Aggregate syntax

in a Data Set expression var_pop (dataset { groupingClause })

in a Component expression within an aggr clause var_pop (component) { groupingClause }

• Analytic syntax

Reference Manual

268

https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Aggregate%20and%20Analytic%20operators/Sample%20standard%20deviation/examples/ds_1.json
https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Aggregate%20and%20Analytic%20operators/Sample%20standard%20deviation/examples/ex_1.json

in a Data Set expression var_pop (dataset over (analyticClause))

in a Component expression within a calc clause var_pop (component over (analyticClause))

Input parameters

dataset the operand Data Set

component the operand Component

groupingClause see Aggregate invocation

analyticClause see Analytic invocation

Semantics for scalar operations

This operator cannot be applied to scalar values.

Input parameters type

dataset

dataset { measure<number> _+ }

component

component<number>

Result type

result

dataset { measure<number> _+ }
| component<number>

Additional Constraints

None.

Behaviour

The operator returns the “population variance” of the input values. For other details, see Aggregate and Analytic
invocations.

Examples

Given the operand dataset DS_1:

Input DS_1 (see structure)

Id_1 Id_2 Id_3 Me_1

2011 A XX 3

2011 A YY 5

2011 B YY 7

2012 A XX 2

2012 B YY 4

Example 1

DS_r := var_pop (DS_1 group by Id_1);

results in (see structure):

Reference Manual

269

https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Aggregate%20and%20Analytic%20operators/Population%20variance/examples/ds_1.json
https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Aggregate%20and%20Analytic%20operators/Population%20variance/examples/ex_1.json

DS_r

Id_1 Me_1

2011 2.666667

2012 1.0

Sample variance: var_samp

Syntax

• Aggregate syntax

in a Data Set expression var_samp (dataset { groupingClause })

in a Component expression within an aggr clause var_samp (component) { groupingClause }

• Analytic syntax

in a Data Set expression var_samp (dataset over (analyticClause))

in a Component expression within a calc clause var_samp (component over (analyticClause))

Input parameters

dataset the operand Data Set

component the operand Component

groupingClause see Aggregate invocation

analyticClause see Analytic invocation

Semantics for scalar operations

This operator cannot be applied to scalar values.

Input parameters type

dataset

dataset { measure<number> _+ }

component

component<number>

Result type

result

dataset { measure<number> _+ }
| component<number>

Additional Constraints

None.

Behaviour

The operator returns the sample variance of the input values. For other details, see Aggregate and Analytic
invocations.

Reference Manual

270

Examples

Given the operand dataset DS_1:

Input DS_1 (see structure)

Id_1 Id_2 Id_3 Me_1

2011 A XX 3

2011 A YY 5

2011 B YY 7

2012 A XX 2

2012 B YY 4

Example 1

DS_r := var_samp (DS_1 group by Id_1);

results in (see structure):

DS_r

Id_1 Me_1

2011 4.0

2012 2.0

First value: first_value

Syntax

in a Data Set expression first_value (dataset over (analyticClause))

in a Component expression within a calc clause first_value (component over (analyticClause))

Input parameters

dataset the operand Data Set

component the operand Component

analyticClause see Analytic invocation

Semantics for scalar operations

This operator cannot be applied to scalar values.

Input parameters type

dataset

dataset { measure<scalar> _+ }

component

component<scalar>

Result type

result

Reference Manual

271

https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Aggregate%20and%20Analytic%20operators/Sample%20variance/examples/ds_1.json
https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Aggregate%20and%20Analytic%20operators/Sample%20variance/examples/ex_1.json

dataset
| component<scalar>

Additional Constraints

The Aggregate invocation is not allowed.

Behaviour

The operator returns the first value (in the value order) of the set of Data Points that belong to the same analytic
window as the current Data Point.

When invoked at Data Set level, it returns the first value for each Measure of the input Data Set. The first value of
different Measures can result from different Data Points. When invoked at Component level, it returns the first value
of the specified Component.

For other details, see Analytic invocation.

Examples

Given the operand dataset DS_1:

Input DS_1 (see structure)

Id_1 Id_2 Id_3 Me_1 Me_2

A XX 1993 3 1

A XX 1994 4 9

A XX 1995 7 5

A XX 1996 6 8

A YY 1993 9 3

A YY 1994 5 4

A YY 1995 10 2

A YY 1996 2 7

Example 1

DS_r := first_value (DS_1 over (partition by Id_1, Id_2 order by Id_3 data points between 1 preceding and 1 following));

results in (see structure):

DS_r

Id_1 Id_2 Id_3 Me_1 Me_2

A XX 1993 3 1

A XX 1994 3 1

A XX 1995 4 9

A XX 1996 7 5

A YY 1993 9 3

A YY 1994 9 3

A YY 1995 5 4

A YY 1996 10 2

Reference Manual

272

https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Aggregate%20and%20Analytic%20operators/First%20value/examples/ds_1.json
https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Aggregate%20and%20Analytic%20operators/First%20value/examples/ex_1.json

Last value: last_value

Syntax

in a Data Set expression last_value (dataset over (analyticClause))

in a Component expression within a calc clause last_value (component over (analyticClause))

Input parameters

dataset the operand Data Set

component the operand Component

analyticClause see Analytic invocation

Semantics for scalar operations

This operator cannot be applied to scalar values.

Input parameters type

dataset

dataset { measure<scalar> _+ }

component

component<scalar>

Result type

result

dataset
| component<scalar>

Additional Constraints

The Aggregate invocation is not allowed.

Behaviour

The operator returns the last value (in the value order) of the set of Data Points that belong to the same analytic
window as the current Data Point.

When invoked at Data Set level, it returns the last value for each Measure of the input Data Set. The last value of
different Measures can result from different Data Points. When invoked at Component level, it returns the last value
of the specified Component.

For other details, see Analytic invocation.

Examples

Given the operand dataset DS_1:

Input DS_1 (see structure)

Id_1 Id_2 Id_3 Me_1 Me_2

A XX 1993 3 1

A XX 1994 4 9

A XX 1995 7 5

A XX 1996 6 8

Reference Manual

273

https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Aggregate%20and%20Analytic%20operators/Last%20value/examples/ds_1.json

A YY 1993 9 3

A YY 1994 5 4

A YY 1995 10 2

A YY 1996 2 7

Example 1

DS_r := last_value (DS_1 over (partition by Id_1, Id_2 order by Id_3 data points between 1 preceding and 1 following));

results in (see structure):

DS_r

Id_1 Id_2 Id_3 Me_1 Me_2

A XX 1993 4 9

A XX 1994 7 5

A XX 1995 6 8

A XX 1996 6 8

A YY 1993 5 4

A YY 1994 10 2

A YY 1995 2 7

A YY 1996 2 7

Lag: lag

Syntax

in a Data Set expression lag (dataset {, offset {, defaultValue } } over ({
partitionClause } orderClause))

in a Component expression within a calc clause lag (component {, offset {, defaultValue } } over ({
partitionClause } orderClause))

Input parameters

dataset the operand Data Set

component the operand Component

offset the relative position prior to the current Data Point

defaultValue the value returned when the offset goes outside of the
partition

partitionClause see Analytic invocation

orderClause see Analytic invocation

Semantics for scalar operations

This operator cannot be applied to scalar values.

Input parameters type

dataset

Reference Manual

274

https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Aggregate%20and%20Analytic%20operators/Last%20value/examples/ex_1.json

dataset

component

component

offset

integer [value > 0]

default value

scalar

Result type

result

dataset
| component

Additional Constraints

The Aggregate invocation is not allowed.

The windowClause of the Analytic invocation syntax is not allowed.

Behaviour

In the ordered set of Data Points of the current partition, the operator returns the value(s) taken from the Data Point
at the specified physical offset prior to the current Data Point.

If defaultValue is not specified then the value returned when the offset goes outside the partition is NULL.

For other details, see Analytic invocation.

Examples

Given the operand dataset DS_1:

Input DS_1 (see structure)

Id_1 Id_2 Id_3 Me_1 Me_2

A XX 1993 3 1

A XX 1994 4 9

A XX 1995 7 5

A XX 1996 6 8

A YY 1993 9 3

A YY 1994 5 4

A YY 1995 10 2

A YY 1996 2 7

Example 1

DS_r := lag (DS_1 , 1 over (partition by Id_1 , Id_2 order by Id_3));

results in (see structure):

DS_r

Id_1 Id_2 Id_3 Me_1 Me_2

Reference Manual

275

https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Aggregate%20and%20Analytic%20operators/Lag/examples/ds_1.json
https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Aggregate%20and%20Analytic%20operators/Lag/examples/ex_1.json

A XX 1993

A XX 1994 3 1

A XX 1995 4 9

A XX 1996 7 5

A YY 1993

A YY 1994 9 3

A YY 1995 5 4

A YY 1996 10 2

Lead: lead

Syntax

in a Data Set expression lead (dataset {, offset {, defaultValue } } over ({
partitionClause } orderClause))

in a Component expression within a calc clause lead (component {, offset {, defaultValue } } over ({
partitionClause } orderClause))

Input parameters

dataset the operand Data Set

component the operand Component

offset the relative position beyond the current Data Point

defaultValue the value returned when the offset goes outside of the
partition

partitionClause see Analytic invocation

orderClause see Analytic invocation

Semantics for scalar operations

This operator cannot be applied to scalar values.

Input parameters type

dataset

dataset

component

component

offset

integer [value > 0]

default value

scalar

Result type

result

Reference Manual

276

dataset
| component

Additional Constraints

The Aggregate invocation is not allowed.

The windowClause of the Analytic invocation syntax is not allowed.

Behaviour

In the ordered set of Data Points of the current partition, the operator returns the value(s) taken from the Data Point
at the specified physical offset beyond the current Data Point.

If defaultValue is not specified, then the value returned when the offset goes outside the partition is NULL.

For other details, see Analytic invocation.

Examples

Given the operand dataset DS_1:

Input DS_1 (see structure)

Id_1 Id_2 Id_3 Me_1 Me_2

A XX 1993 3 1

A XX 1994 4 9

A XX 1995 7 5

A XX 1996 6 8

A YY 1993 9 3

A YY 1994 5 4

A YY 1995 10 2

A YY 1996 2 7

Example 1

DS_r := lead (DS_1 , 1 over (partition by Id_1 , Id_2 order by Id_3));

results in (see structure):

DS_r

Id_1 Id_2 Id_3 Me_1 Me_2

A XX 1993 4 9

A XX 1994 7 5

A XX 1995 6 8

A XX 1996

A YY 1993 5 4

A YY 1994 10 2

A YY 1995 2 7

A YY 1996

Reference Manual

277

https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Aggregate%20and%20Analytic%20operators/Lead/examples/ds_1.json
https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Aggregate%20and%20Analytic%20operators/Lead/examples/ex_1.json

Rank: rank

Syntax

in a Component expression within a calc clause rank (over ({ partitionClause } orderClause))

Input parameters

partitionClause see Analytic invocation

orderClause see Analytic invocation

Semantics for scalar operations

This operator cannot be applied to scalar values.

Input parameters type

dataset

dataset

component

component

Result type

result

dataset { measure<integer> int_var }
| component<integer>

Additional Constraints

The invocation at Data Set level is not allowed.

The Aggregate invocation is not allowed.

The windowClause of the Analytic invocation syntax is not allowed.

Behaviour

The operator returns an order number (rank) for each Data Point, starting from the number 1 and following the order
specified in the orderClause. If some Data Points are in the same order according to the specified orderClause, the
same order number (rank) is assigned and a gap appears in the sequence of the assigned ranks (for example, if four
Data Points have the same rank 5, the following assigned rank would be 9).

For other details, see Analytic invocation.

Examples

Given the operand dataset DS_1:

Input DS_1 (see structure)

Id_1 Id_2 Id_3 Me_1 Me_2

A XX 2000 3 1

A XX 2001 4 9

A XX 2002 7 5

A XX 2003 6 8

A YY 2000 9 3

Reference Manual

278

https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Aggregate%20and%20Analytic%20operators/Rank/examples/ds_1.json

A YY 2001 5 4

A YY 2002 10 2

A YY 2003 5 7

Example 1

DS_r := DS_1 [calc Me_2 := rank (over (partition by Id_1 , Id_2 order by Me_1))];

results in (see structure):

DS_r

Id_1 Id_2 Id_3 Me_1 Me_2

A XX 2000 3 1

A XX 2001 4 2

A XX 2002 7 4

A XX 2003 6 3

A YY 2000 9 3

A YY 2001 5 1

A YY 2002 10 4

A YY 2003 5 1

Ratio to report: ratio_to_report

Syntax

in a Data Set expression ratio_to_report (dataset over (partitionClause))

in a Component expression within a calc clause ratio_to_report (component over (partitionClause))

Input parameters

dataset the operand Data Set

component the operand Component

partitionClause see Analytic invocation

Semantics for scalar operations

This operator cannot be applied to scalar values.

Input parameters type

dataset

dataset { measure<number> _+ }

component

component<number>

Result type

result

Reference Manual

279

https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Aggregate%20and%20Analytic%20operators/Rank/examples/ex_1.json

dataset { measure<number> _+ }
| component<number>

Additional Constraints

The Aggregate invocation is not allowed.

The orderClause and windowClause of the Analytic invocation syntax are not allowed.

Behaviour

The operator returns the ratio between the value of the current Data Point and the sum of the values of the partition
which the current Data Point belongs to.

For other details, see Analytic invocation.

Examples

Given the operand dataset DS_1:

Input DS_1 (see structure)

Id_1 Id_2 Id_3 Me_1 Me_2

A XX 2000 3 1

A XX 2001 4 3

A XX 2002 7 5

A XX 2003 6 1

A YY 2000 12 0

A YY 2001 8 8

A YY 2002 6 5

A YY 2003 14 -3

Example 1

DS_r := ratio_to_report (DS_1 over (partition by Id_1, Id_2));

results in (see structure):

DS_r

Id_1 Id_2 Id_3 Me_1 Me_2

A XX 2000 0.15 0.1

A XX 2001 0.2 0.3

A XX 2002 0.35 0.5

A XX 2003 0.3 0.1

A YY 2000 0.3 0

A YY 2001 0.2 0.8

A YY 2002 0.15 0.5

A YY 2003 0.35 -0.3

Reference Manual

280

https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Aggregate%20and%20Analytic%20operators/Ratio%20to%20report/examples/ds_1.json
https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Aggregate%20and%20Analytic%20operators/Ratio%20to%20report/examples/ex_1.json

VTL-ML - Data Validation Operators

Check datapoint: check_datapoint

Syntax

check_datapoint (op , dpr { components listComp } { output })

listComp ::= comp { , comp }*

output ::= invalid | all | all_measures

Input parameters

op the Data Set to check

dpr the Data Point Ruleset to be used

listComp
if dpr is defined on Value Domains then listComp is the
list of Components of op to be
associated (in positional order) to the conditioning
Value Domains defined in dpr. If dpr is
defined on Variables then listComp is the list of
Components of op to be associated (in
positional order) to the conditioning Variables defined in
dpr (for documentation purposes).

comp Component of op

output specifies the Data Points and the Measures of the
resulting Data Set: | · invalid: the resulting Data Set
contains a Data Point for each Data Point of op and |
each Rule in dpr that evaluates to FALSE on that Data
Point. The resulting | Data Set has the Measures of op.
| · all: the resulting Data Set contains a data point for
each Data Point of op and | each Rule in dpr. The
resulting Data Set has the boolean Measure bool_var. |
· all_measures: the resulting Data Set contains a Data
Point for each Data Point of op | and each Rule in dpr.
The resulting dataset has the Measures of op and the |
boolean Measure bool_var. | If not specified then output
is assumed to be invalid. See the Behaviour for further
details.

Examples of valid syntaxes

check_datapoint (DS1, DPR invalid)
check_datapoint (DS1, DPR all_measures)

Semantics for scalar operations

This operator cannot be applied to scalar values.

Input parameters type

op

dataset

dpr

name<datapoint>

Reference Manual

281

comp

name<component>

Result type

result

dataset

Additional Constraints

If dpr is defined on Value Domains then it is mandatory to specify listComp. The Components specified in listComp
must belong to the operand op and be defined on the Value Domains specified in the signature of dpr.

If dpr is defined on Variables then the Components specified in the signature of dpr must belong to the operand op.

If dpr is defined on Variables and listComp is specified then the Components specified in listComp are the same, in
the same order, as those specified in op (they are provided for documentation purposes).

Behaviour

It returns a Data Set having the following Components:

• the Identifier Components of op

• the Identifier Component ruleid whose aim is to identify the Rule that has generated the actual Data Point (it
contains at least the Rule name specified in dpr 8)

• if the output parameter is invalid: the original Measures of op (no boolean measure)

• if the output parameter is all: the boolean Measure bool_var whose value is the result of the evaluation of a rule
on a Data Point (TRUE, FALSE or NULL).

• if the output parameter is all_measures: the original measures of op and the boolean Measure bool_var whose
value is the result of the evaluation of a rule on a Data Point (TRUE, FALSE or NULL).

• the Measure errorcode that contains the errorcode specified in the rule

• the Measure errorlevel that contains the errorlevel specified in the rule

A Data Point of op can produce several Data Points in the resulting Data Set, each of them with a different value of
ruleid. If output is invalid then the resulting Data Set contains a Data Point for each Data Point of op and each rule of
dpr that evaluates to FALSE. If output is all or all_measures then the resulting Data Set contains a Data Point for
each Data Point of op and each rule of dpr.

Examples

Given the operand dataset DS_1 and the datapoint ruleset dpr1:

define datapoint ruleset dpr1 (variable Id_3, Me_1) is
 when Id_3 = “CREDIT” then Me_1 >= 0 errorcode “Bad credit”
 ; when Id_3 = “DEBIT” then Me_1 >= 0 errorcode “Bad debit”
end datapoint ruleset

Input DS_1 (see structure)

Id_1 Id_2 Id_3 Me_1

2011 l CREDIT 10

2011 l DEBIT -2

2012 l CREDIT 10

2012 l DEBIT 2

Reference Manual

282

https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Data%20validation%20operators/Check%20datapoint/examples/ds_1.json

Example 1

DS_r := check_datapoint (DS_1, dpr1);define datapoint ruleset dpr1 (variable Id_3, Me_1) is
 when Id_3 = "CREDIT" then Me_1 >= 0 errorcode "Bad credit"
 ; when Id_3 = "DEBIT" then Me_1 >= 0 errorcode "Bad debit"
end datapoint ruleset;

results in (see structure):

DS_r

Id_1 Id_2 Id_3 Me_1 ruleid errorcode errorlevel

2011 l DEBIT -2 2 Bad debit

Example 2

DS_r := check_datapoint (DS_1, dpr1 all);define datapoint ruleset dpr1 (variable Id_3, Me_1) is
 when Id_3 = "CREDIT" then Me_1 >= 0 errorcode "Bad credit"
 ; when Id_3 = "DEBIT" then Me_1 >= 0 errorcode "Bad debit"
end datapoint ruleset;

results in (see structure):

DS_r

Id_1 Id_2 Id_3 bool_var ruleid errorcode errorlevel

2011 l CREDIT true 1

2011 l DEBIT true 1

2012 l CREDIT true 1

2012 l DEBIT true 1

2011 l CREDIT true 2

2011 l DEBIT false 2 Bad debit

2012 l CREDIT true 2

2012 l DEBIT true 2

Check hierarchy: check_hierarchy

Syntax

check_hierarchy (op , hr { condition condComp { , condComp }* } { rule ruleComp } { mode } { input } { output
})

mode ::= non_null | non_zero | partial_null | partial_zero | always_null | always_zero

input ::= dataset | dataset_priority

output ::= invalid | all | all_measures

Input parameters

op the Data Set to be checked

hr the hierarchical Ruleset to be used

Reference Manual

283

https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Data%20validation%20operators/Check%20datapoint/examples/ex_1.json
https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Data%20validation%20operators/Check%20datapoint/examples/ex_2.json

condComp
condComp is a Component of op to be associated (in
positional order) to the conditioning
Value Domains or Variables defined in hr (if any).

ruleComp
ruleComp is the Identifier Component of op to be
associated to the rule Value Domain or
Variable defined in hr.

mode
this parameter specifies how to treat the possible
missing Data Points corresponding to
the Code Items in the left and right sides of the rules
and which Data Points are produced
in output. The meaning of the possible values of the
parameter is explained below.

input
this parameter specifies the source of the values used
as input of the comparisons. The
meaning of the possible values of the parameter is
explained below.

output
this parameter specifies the structure and the content
of the resulting dataset. The
meaning of the possible values of the parameter is
explained below.

Examples of valid syntaxes

check_hierarchy (DS1, HR_2 non_null dataset invalid)
check_hierarchy (DS1, HR_3 non_zero dataset_priority all)

Input parameters type

op

dataset { measure<number> _ }

hr

name<hierarchical>

condComp

name<component>

ruleComp

name<identifier>

Result type

result

dataset { measure<number> _ }

Additional Constraints

If hr is defined on Value Domains then it is mandatory to specify the condition (if any in the ruleset hr) and the rule
parameters. Moreover, the Components specified as condComp and ruleComp must belong to the operand op and
must take values on the Value Domains corresponding, in positional order, to the ones specified in the condition and
rule parameter of hr.

If hr is defined on Variables, the specification of condComp and ruleComp is not needed, but they can be specified
all the same if it is desired to show explicitly in the invocation which are the involved Components: in this case, the

Reference Manual

284

condComp and ruleComp must be the same and in the same order as the Variables specified in the condition and
rule signatures of hr.

Behaviour

The check_hierarchy operator applies the Rules of the Ruleset hr to check the Code Items Relations between the
Code Items present in op (as for the Code Items Relations, see the User Manual - section “Generic Model for
Variables and Value Domains”). The operator checks if the relation between the left and the right member is fulfilled,
giving TRUE in positive case and FALSE in negative case.

The Attribute propagation rule is applied on each group of Data Points which contributes to the same Data Point of
the result.

The behaviours relevant to the different options of the input parameters are the following.

First, the parameter input is used to determine the source of the Data Points used as input of the check_hierarchy.
The possible options of the parameter input and the corresponding behaviours are the following:

dataset
this option addresses the case where all the input Data
Points of all the Rules of the
Ruleset are expected to be taken from the input Data
Set (the operand op).
For each Rule of the Ruleset and for each item on the
left and right sides of the Rule,
the operator takes the input Data Points exclusively
from the operand op.

dataset_priority
this option addresses the case where the input Data
Points of all the Rules of the
Ruleset are preferably taken from the input Data Set
(the operand op). However, if a
valid Measure value for an expected Data Point is not
found in op, the attempt is
made to take it from the computed output of a
(possible) other Rule.
For each Rule of the Ruleset and for each item on the
left and right sides of the Rule:
· if the item is not defined as the result (left side) of
another Rule that applies the
Code Item relation “is equal to” (=), the current Rule
takes the input Data Points
from the operand op.
· if the item is defined as result of another Rule R that
applies the Code Item
relation “is equal to” (=), then:
> if an expected input Data Point exists in op and its
Measure is not NULL,
then the current Rule takes such Data Point from op;
> if an expected input Data Point does not exist in op or
its measure is NULL,
then the current Rule takes the Data Point (if any) that
has the same
Identifiers’ values from the computed output of the
other Rule R;

If the parameter input is not specified then it is assumed to be dataset.

Then the parameter mode is considered, to determine the behaviour for missing Data Points and for the Data Points
to be produced in the output. The possible options of the parameter mode and the corresponding behaviours are the
following:

Reference Manual

285

non_null
the result Data Point is produced when all the items
involved in the comparison exist
and have not NULL Measure value (i.e., when no Data
Point corresponding to the Code
Items of the left and right sides of the rule is missing or
has NULL Measure value);
under this option, in evaluating the comparison, the
possible missing Data Points
corresponding to the Code Items of the left and right
sides of the rule are considered
existing and having a NULL Measure value;

non_zero
the result Data Point is produced when at least one of
the items involved in the
comparison exist and have Measure not equal to 0
(zero); the possible missing Data
Points corresponding to the Code Items of the left and
right sides of the rule
are considered existing and having a Measure value
equal to 0;

partial_null
the result Data Point is produced if at least one Data
Point corresponding to the Code
Items of the left and right sides of the rule is found
(whichever is its Measure value);
the possible missing Data Points corresponding to the
Code Items of the left and right
sides of the rule are considered existing and having a
NULL Measure value;

partial_zero
the result Data Point is produced if at least one Data
Point corresponding to the Code
Items of the left and right sides of the rule is found
(whichever is its Measure value);
the possible missing Data Points corresponding to the
Code Items of the left and right
sides of the rule are considered existing and having a
Measure value equal to 0 (zero);

always_null
the result Data Point is produced in any case; the
possible missing Data Points
corresponding to the Code Items of the left and right
sides of the rule are considered
existing and having a Measure value equal to NULL;

always_zero
the result Data Point is produced in any case; the
possible missing Data Points
corresponding to the Code Items of the left and right
sides of the rule are considered
existing and having a Measure value equal to 0 (zero);

If the parameter mode is not specified, then it is assumed to be non_null.

The following table summarizes the behaviour of the options of the parameter “mode”:

OPTION of the
MODE

PARAMETER:

Missing Data
Points are

considered:
Null Data Points
are considered:

Condition for
evaluating the rule

Returned Data
Points

Non_null NULL NULL If all the involved
Data Points are not
NULL

Only not NULL Data
Points (Zeros are
returned too)

Reference Manual

286

Non_zero Zero NULL If at least one the
involved Data Points
is <> zero

Only not zero Data
Points (NULL are
returned too)

Partial_null NULL NULL If at least the
involved Data Points
is not NULL

Data Points of any
value (NULL or not
NULL and zero too)

Partial_zero Zero NULL If at least the
involved Data Points
is not NULL

Data Points of any
value (NULL or not
NULL and zero too)

Always_null NULL NULL Always Data Points of any
value (NULL or not
NULL and zero too)

Always_zero Zero NULL Always Data Points of any
value (NULL or not
NULL and zero too)

Finally the parameter output is considered, to determine the structure and content of the resulting Data Set. The
possible options of the parameter output and the corresponding behaviours are the following:

all
all the Data Points produced by the comparison are
returned, both the valid ones (TRUE)
and the invalid ones (FALSE) besides the possible
NULL ones. The result of the
comparison is returned in the boolean Measure
bool_var. The original Measure
Component of the Data Set op is not returned.

invalid
only the invalid (FALSE) Data Points produced by the
comparison are returned. The
result of the comparison (boolean Measure bool_var) is
not returned. The original
Measure Component of the Data Set op is returned and
contains the Measure values
taken from the Data Points on the left side of the rule.

all_measures
all the Data Points produced by the comparison are
returned, both the valid ones
(TRUE) and the invalid ones (FALSE) besides the
possible NULL ones. The result
of the comparison is returned in the boolean Measure
bool_var. The original
Measure Component of the Data Set op is returned and
contains the Measure
values taken from the Data Points on the left side of the
rule.

If the parameter output is not specified then it is assumed to be invalid.

In conclusion, the operator returns a Data Set having the following Components:

• all the Identifier Components of op

• the additional Identifier Component ruleid, whose aim is to identify the Rule that has generated the actual Data
Point (it contains at least the Rule name specified in hr (The content of ruleid maybe personalised in the
implementation))

• if the output parameter is all: the boolean Measure bool_var whose values are the result of the evaluation of the
Rules (TRUE, FALSE or NULL).

• if the output parameter is invalid: the original Measure of op, whose values are taken from the Measure values
of the Data Points of the left side of the Rule

Reference Manual

287

• if the output parameter is all_measures: the boolean Measure bool_var, whose value is the result of the
evaluation of a Rule on a Data Point (TRUE, FALSE or NULL), and the original Measure of op, whose values
are taken from the Measure values of the Data Points of the left side of the Rule

• the Measure imbalance, which contains the difference between the Measure values of the Data Points on the
left side of the Rule and the Measure values of the corresponding calculated Data Points on the right side of the
Rule

• the Measure errorcode, which contains the errorcode value specified in the Rule

• the Measure errorlevel, which contains the errorlevel value specified in the Rule

Note that a generic Data Point of op can produce several Data Points in the resulting Data Set, one for each Rule in
which the Data Point appears as the left member of the comparison.

Examples

See also the examples in define hierarchical ruleset.

Given the following hierarchical ruleset:

define hierarchical ruleset HR_1 (valuedomain rule VD_1) is
 R010 : A = J + K + L errorlevel 5
 ; R020 : B = M + N + O errorlevel 5
 ; R030 : C = P + Q errorcode XX errorlevel 5
 ; R040 : D = R + S errorlevel 1
 ; R050 : E = T + U + V errorlevel 0
 ; R060 : F = Y + W + Z errorlevel 7
 ; R070 : G = B + C
 ; R080 : H = D + E errorlevel 0
 ; R090 : I = D + G errorcode YY errorlevel 0
 ; R100 : M >= N errorlevel 5
 ; R110 : M <= G errorlevel 5
end hierarchical ruleset

And given the operand Data Set DS_1 (where At_1 is viral and the propagation rule says that the alphabetic order
prevails the NULL prevails on the alphabetic characters and the Attribute value for missing Data Points is assumed
as NULL):

Input DS_1 (see structure)

Id_1 Id_2 Me_1

2010 A 5

2010 B 11

2010 C 0

2010 G 19

2010 H

2010 I 14

2010 M 2

2010 N 5

2010 O 4

2010 P 7

2010 Q -7

2010 S 3

2010 T 9

2010 U

2010 V 6

Reference Manual

288

https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Data%20validation%20operators/Check%20hierarchy/examples/ds_1.json

Example 1

DS_r := check_hierarchy (DS_1, HR_1 rule Id_2 partial_null all);define hierarchical ruleset HR_1 (valuedomain rule VD_1) is
 R010 : A = J + K + L errorlevel 5
 ; R020 : B = M + N + O errorlevel 5
 ; R030 : C = P + Q errorcode "XX" errorlevel 5
 ; R040 : D = R + S errorlevel 1
 ; R060 : F = Y + W + Z errorlevel 7
 ; R070 : G = B + C
 ; R080 : H = D + E errorlevel 0
 ; R090 : I = D + G errorcode "YY" errorlevel 0
 ; R100 : M >= N errorlevel 5
 ; R110 : M <= G errorlevel 5
end hierarchical ruleset;

results in (see structure):

DS_r

Id_1 Id_2 ruleid bool_var imbalance errorcode errorlevel

2010 A R010 5

2010 B R020 true 0 5

2010 C R030 true 0 XX 5

2010 D R040 1

2010 E R050 0

2010 F R060 7

2010 G R070 false 8

2010 H R080 0

2010 I R090 YY 0

2010 M R100 false -3 5

2010 M R110 true -17 5

Check : check

Syntax

check (op { errorcode errorcode } { errorlevel errorlevel } { imbalance imbalance } { output })

output ::= invalid | all

Input parameters

op a boolean Data Set (a boolean condition expressed on
one or more Data Sets)

errorcode
the error code to be produced when the condition
evaluates to FALSE. It must be a
valid value of the errorcode_vd Value Domain (or string
if the errorcode_vd
Value Domain is not found). It can be a Data Set or a
scalar. If not specified
then errorcode is NULL.

Reference Manual

289

https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Data%20validation%20operators/Check%20hierarchy/examples/ex_1.json

errorlevel
the error level to be produced when the condition
evaluates to FALSE. It must be a
valid value of the errorlevel_vd Value Domain (or
integer if the errorcode_vd Value Domain is not found).
It can be a Data Set or a scalar. If not specified then
errorlevel is NULL.

imbalance
the imbalance to be computed. imbalance is a numeric
mono-measure Data Set
with the same Identifiers of op. If not specified then
imbalance is NULL.

output
specifies which Data Points are returned in the
resulting Data Set:
· invalid returns the Data Points of op for which the
condition evaluates to FALSE
· all returns all Data Points of op
If not specified then output is all.

Examples of valid syntaxes

check (DS1 > DS2 errorcode myerrorcode errorlevel myerrorlevel imbalance DS1 - DS2 invalid)

Input parameters type

op

dataset

errorcode

errorcode_vd

errorlevel

errorlevel_vd

imbalance

number

Result type

result

dataset

Additional Constraints

op has exactly a boolean Measure Component.

Behaviour

It returns a Data Set having the following components:

• the Identifier Components of op

• a boolean Measure named bool_var that contains the result of the evaluation of the boolean dataset op

• the Measure imbalance that contains the specified imbalance

• the Measure errorcode that contains the specified errorcode

• the Measure errorlevel that contains the specified errorlevel

Reference Manual

290

If output is all then all data points are returned. If output is invalid then only the Data Points where bool_var is
FALSE are returned.

Examples

Given the Data Sets DS_1 and DS_2:

Input DS_1 (see structure)

Id_1 Id_2 Me_1

2010 I 1

2011 I 2

2012 I 10

2013 I 4

2014 I 5

2015 I 6

2010 D 25

2011 D 35

2012 D 45

2013 D 55

2014 D 50

2015 D 75

Input DS_2 (see structure)

Id_1 Id_2 Me_1

2010 I 9

2011 I 2

2012 I 10

2013 I 7

2014 I 5

2015 I 6

2010 D 50

2011 D 35

2012 D 40

2013 D 55

2014 D 65

2015 D 75

Example 1

DS_r := check (DS_1 >= DS_2 imbalance DS_1 - DS_2);

results in (see structure):

DS_r

Id_1 Id_2 bool_var imbalance errorcode errorlevel

2010 I false -8

Reference Manual

291

https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Data%20validation%20operators/Check/examples/ds_1.json
https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Data%20validation%20operators/Check/examples/ds_2.json
https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Data%20validation%20operators/Check/examples/ex_1.json

2011 I true 0

2012 I true 0

2013 I false -3

2014 I true 0

2015 I true 0

2010 D false -25

2011 D true 0

2012 D true 5

2013 D true 0

2014 D false -15

2015 D true 0

VTL-ML - Conditional Operators

if-then-else: if

Syntax

if condition then thenOperand else elseOperand

Input parameters

condition a Boolean condition (dataset, component or scalar)

thenOperand the operand returned when condition evaluates to true

elseOperand the operand returned when condition evaluates to false

Examples of valid syntaxes

if A > B then A else B

Semantics for scalar operations

The if operator returns thenOperand if condition evaluates to true, elseOperand otherwise. For example, considering
the statement:

if x1 > x2 then 2 else 5,
 for x1 = 3, x2 =0 it returns 2
 for x1 = 0, x2 =3 it returns 5

Input parameters type

condition

dataset { measure <boolean> _ }
| component<Boolean>
| boolean

thenOperand

dataset
| component
| scalar

elseOperand

Reference Manual

292

dataset
| component
| scalar

Result type

result

dataset
| component
| scalar

Additional Constraints

• The operands thenOperand and elseOperand must be of the same scalar type.

• If the operation is at scalar level, thenOperand and elseOperand are scalar then condition must be scalar too (a
boolean scalar).

• If the operation is at Component level, condition must be a boolean expression. Any Components referenced in
condition, thenOperand and elseOperand must belong to the same Data Set.

• If the operation is at Data Set level, at least one of thenOperand and elseOperand is a Data Set (the other one
can be scalar) and condition must be a Data Set too (having a unique boolean Measure) and must have the
same Identifiers as thenOperand or/and ElseOperand

• If thenOperand and elseOperand are both Data Sets then they must have the same Components in the
same roles

• If one of thenOperand and elseOperand is a Data Set and the other one is a scalar, the Measures of the
operand Data Set must be all of the same scalar type as the scalar operand.

Behaviour

For operations at Component level, the operation is applied for each Data Point of the unique input Data Set, the
if-then-else operator returns the value from the thenOperand Component when condition evaluates to true,
otherwise it returns the value from the elseOperand Component. If one of the operands thenOperand or
elseOperand is scalar, such a scalar value can be returned depending on the outcome of the condition.

For operations at Data Set level, the if-then-else operator returns the Data Point from thenOperand when the Data
Point of condition having the same Identifiers’ values evaluates to true, and returns the Data Point from elseOperand
otherwise. If one of the operands thenOperand or elseOperand is scalar, such a scalar value can be returned
(depending on the outcome of the condition) and in this case it feeds the values of all the Measures of the result Data
Point.

The behaviour for two Data Sets can be procedurally explained as follows. First the condition Data Set is evaluated,
then its true Data Points are inner joined with thenOperand and its false Data Points are inner joined with
elseOperand, finally the union is made of these two partial results (the condition ensures that there cannot be
conflicts in the union).

Examples

Given the operand Data Sets DS_cond, DS_1 and DS_2:

Input DS_1 (see structure)

Id_1 Id_2 Id_3 Id_4 Me_1

2012 B Total M 5451780

2012 B Total F 5643070

2012 G Total M 5449803

2012 G Total F 5673231

2012 S Total M 23099012

Reference Manual

293

https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Conditional%20operators/if-then-else/examples/ds_1.json

2012 S Total F 23719207

2012 F Total M 31616281

2012 F Total F 33671580

2012 I Total M 28726599

2012 I Total F 30667608

2012 A Total M

2012 A Total F

Input DS_2 (see structure)

Id_1 Id_2 Id_3 Id_4 Me_1

2012 S Total F 25.8

2012 F Total F

2012 I Total F 20.9

2012 A Total M 6.3

Input DS_3 (see structure)

Id_1 Id_2 Id_3 Id_4 Me_1

2012 B Total M 0.12

2012 G Total M 22.5

2012 S Total M 23.7

2012 A Total F

Example 1

DS_r := if (DS_1#Id_4 = "F") then DS_2 else DS_3;

results in (see structure):

DS_r

Id_1 Id_2 Id_3 Id_4 Me_1

2012 S Total F 25.8

2012 F Total F

2012 I Total F 20.9

2012 B Total M 0.12

2012 G Total M 22.5

2012 S Total M 23.7

Case: case

Syntax

case when condition then thenOperand {when condition then thenOperand}*

else elseOperand

Input parameters

Reference Manual

294

https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Conditional%20operators/if-then-else/examples/ds_2.json
https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Conditional%20operators/if-then-else/examples/ds_3.json
https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Conditional%20operators/if-then-else/examples/ex_1.json

condition a Boolean condition (dataset, component or scalar)

thenOperand the operand returned when condition evaluates to true

elseOperand the operand returned when condition evaluates to false

Examples of valid syntaxes

case when A > B then A when A = B then A else B

Semantics for scalar operations

The case operator returns the first thenOperand whose corresponding condition evaluates to true, elseOperand if
none of the when conditions evaluates to true.

For example, considering the statement:

case when x1 > x2 then 2 when x1 = x2 then 0 else 5;

for x1 = 3, x2 = 0 it returns 2
for x1 = x2 = 3 it returns 0
for x1 = 0, x2 = 3 it returns 5

Input parameters type

condition

dataset { measure <boolean> _ }
| component<Boolean>
| boolean

thenOperand

dataset
| component
| scalar

elseOperand

dataset
| component
| scalar

Result type

result

dataset
| component
| scalar

Additional Constraints

The same rules apply as for the if-then-else operator.

Behaviour

For operations at Component level, the operation is applied for each Data Point of the unique input Data Set, the
case operator returns the value from the thenOperand Component whose corresponding condition evaluates to true;
if none of the when conditions evaluates to true, it returns the value from the elseOperand Component. If one of the
operands thenOperand or elseOperand is scalar, such a scalar value can be returned depending on the outcome of
the condition.

For operations at Data Set level, the case operator returns the Data Point from the thenOperand when the first Data
Point of condition having the same Identifiers’ values evaluates to true; returns the Data Point from elseOperand if

Reference Manual

295

none of the when conditions evaluates to true. If one of the operands thenOperand or elseOperand is scalar, such a
scalar value can be returned (depending on the outcome of the condition) and in this case it feeds the values of all
the Measures of the result Data Point.

The behaviour for two Data Sets can be procedurally explained as follows. First the condition Data Set is evaluated,
then its true Data Points are inner joined with thenOperand and its false Data Points are inner joined with
elseOperand, finally the union is made of these two partial results (the condition ensures that there cannot be
conflicts in the union).

Examples

Given the operand Data Set DS_1:

Input DS_1 (see structure)

Id_1 Me_1

1 0.12

2 3.5

3 10.7

4

Example 1

DS_r := DS_1
 [calc Me_2 :=
 case when Me_1 <= 1 then 0
 when Me_1 > 1 and Me_1 <= 10 then 1
 when Me_1 > 10 then 10
 else 100];

results in (see structure):

DS_r

Id_1 Me_1 Me_2

1 0.12 0

2 3.5 1

3 10.7 10

4 100

Nvl: nvl

Syntax

nvl (op1 , op2)

Input parameters

op1 the first operand

op2 the second operand

Examples of valid syntaxes

nvl (ds1#m1, 0)

Reference Manual

296

https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Conditional%20operators/Case/examples/ds_1.json
https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Conditional%20operators/Case/examples/ex_1.json

Semantics for scalar operations

The operator nvl returns op2 when op1 is null, otherwise op1.

For example:

nvl (5, 0) returns 5
nvl (null, 0) returns 0

Input parameters type

op1

dataset
| component
| scalar

op2

dataset
| component
| scalar

Result type

result

dataset
| component
| scalar

Additional Constraints

If op1 and op2 are scalar values then they must be of the same type.

If op1 and op2 are Components then they must be of the same type.

If op1 and op2 are Data Sets then they must have the same Components.

Behaviour

The operator nvl returns the value from op2 when the value from op1 is null, otherwise it returns the value from op1.

The operator has the typical behaviour of the operators applicable on two scalar values or Data Sets or Data Set
Components.

Also the following statement gives the same result: if isnull (op1) then op2 else op1.

Examples

Given the input Data Set DS_1:

Input DS_1 (see structure)

Id_1 Id_2 Id_3 Id_4 Me_1

2012 B Total Total 11094850

2012 G Total Total 11123034

2012 S Total Total

2012 M Total Total 417546

2012 F Total Total 5401267

2012 N Total Total

Reference Manual

297

https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Conditional%20operators/Nvl/examples/ds_1.json

Example 1

DS_r := nvl (DS_1, 0);

results in (see structure):

DS_r

Id_1 Id_2 Id_3 Id_4 Me_1

2012 B Total Total 11094850

2012 G Total Total 11123034

2012 S Total Total 0

2012 M Total Total 417546

2012 F Total Total 5401267

2012 N Total Total 0

VTL-ML - Clause Operators

Filtering Data Points: filter

Syntax

op [filter filterCondition]

Input parameters

op the operand

filterCondition the filter condition

Examples of valid syntaxes

DS_1 [filter Me_3 > 0]
DS_1 [filter Me_3 + Me_2 <= 0]

Semantics for scalar operations

This operator cannot be applied to scalar values.

Input parameters type

op

dataset

filterCondition

component<boolean>

Result type

result

dataset

Reference Manual

298

https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Conditional%20operators/Nvl/examples/ex_1.json

Additional Constraints

None.

Behavior

The operator takes as input a Data Set (op) and a boolean Component expression (filterCondition) and filters the
input Data Points according to the evaluation of the condition. When the expression is TRUE the Data Point is kept in
the result, otherwise it is not kept (in other words, it filters out the Data Points of the operand Data Set for which
filterCondition condition evaluates to FALSE or NULL).

Examples

Given the Data Set DS_1:

Input DS_1 (see structure)

Id_1 Id_2 Id_3 Me_1 At_1

1 A XX 2 E

1 A YY 2 F

1 B XX 20 F

1 B YY 1 F

2 A XX 4 E

2 A YY 9 F

Example 1

DS_r := DS_1 [filter Id_1 = 1 and Me_1 < 10];

results in (see structure):

DS_r

Id_1 Id_2 Id_3 Me_1 At_1

1 A XX 2 E

1 A YY 2 F

1 B YY 1 F

Calculation of a Component: calc

Syntax

op [calc { calcRole } calcComp := calcExpr { , { calcRole } calcComp := calcExpr }*]

calcRole ::= identifier | measure | attribute | viral attribute

Input parameters

op the operand

calcRole the role to ba assigned to a Component to be
calculated

calcComp the name of a Component to be calculated

Reference Manual

299

https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Clause%20operators/Filtering%20Data%20Points/examples/ds_1.json
https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Clause%20operators/Filtering%20Data%20Points/examples/ex_1.json

calcExpr
expression at component level, having only
Components of the
input Data Sets as operands, used to calculate a
Component

Examples of valid syntaxes

DS_1 [calc Me_3 := Me_1 + Me_2]

Semantics for scalar operations

This operator cannot be applied to scalar values.

Input parameters type

op

dataset

calcComp

name<component>

calcExpr

component<scalar>

Result type

result

dataset

Additional Constraints

The calcComp parameter cannot be the name of an Identifier component.

All the components used in calcComp must belong to the operand Data Set op.

Behavior

The operator calculates new Identifier, Measure or Attribute Components on the basis of sub-expressions at
Component level. Each Component is calculated through an independent sub-expression. It is possible to specify the
role of the calculated Component among measure, identifier, attribute, or viral attribute, therefore the calc clause
can be used also to change the role of a Component when possible. The keyword viral allows controlling the virality
of the calculated Attributes (for the attribute propagation rule see the User Manual). When the role is omitted, the
following rule is applied: if the component exists in the operand Data Set then it maintains its role; if the component
does not exist in the operand Data Set then its role is Measure.

The calcExpr sub-expressions are independent one another, they can only reference Components of the input Data
Set and cannot use Components generated, for example, by other calcExpr. If the calculated Component is a new
Component, it is added to the output Data Set. If the Calculated component is a Measure or an Attribute that already
exists in the input Data Set, the calculated values overwrite the original values. If the calculated Component is an
Identifier that already exists in the input Data Set, an exception is raised because overwriting an Identifier
Component is forbidden for preserving the functional behaviour. Analytic invocations can be used in the calc clause.

Examples

Given the Data Set DS_1:

Input DS_1 (see structure)

Id_1 Id_2 Id_3 Me_1

1 A CA 20

Reference Manual

300

https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Clause%20operators/Calculation%20of%20a%20Component/examples/ds_1.json

1 B CA 2

2 A CA 2

Example 1

DS_r := DS_1 [calc Me_1:= Me_1 * 2];

results in (see structure):

DS_r

Id_1 Id_2 Id_3 Me_1

1 A CA 40

1 B CA 4

2 A CA 4

Example 2

DS_r := DS_1 [calc attribute At_1:= "EP"];

results in (see structure):

DS_r

Id_1 Id_2 Id_3 Me_1 At_1

1 A CA 20 EP

1 B CA 2 EP

2 A CA 2 EP

Aggregation: aggr

Syntax

op [aggr aggrClause { groupingClause }]

aggrClause ::= { aggrRole } aggrComp := aggrExpr { , { aggrRole } aggrComp:= aggrExpr }*

groupingClause ::= { group by groupingId {, groupingId }*

| group except groupingId {, groupingId }*
| group all conversionExpr }¹
{ having havingCondition }

aggrRole ::= measure | attribute | viral attribute

Input parameters

op the operand

aggrClause
clause that specifies the required aggregations, i.e., the
aggregated
Components to be calculated, their roles and their
calculation algorithm,
to be applied on the joined and filtered Data Points

Reference Manual

301

https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Clause%20operators/Calculation%20of%20a%20Component/examples/ex_1.json
https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Clause%20operators/Calculation%20of%20a%20Component/examples/ex_2.json

aggrRole the role of the aggregated Component to be calculated

aggrComp
the name of the aggregated Component to be
calculated; this is a dependent
Component of the result (Measure or Attribute, not
Identifier)

aggrExpr
expression at component level, having only
Components of the input Data Sets
as operands, which invokes an aggregate operator
(e.g. avg, count, max…,
see also the corresponding sections) to perform the
desired aggregation.
Note that the count operator is used in an aggrClause
without parameters, e.g.:
DS_1 [aggr Me_1 := count () group by Id_1)]

groupingClause
the following alternative grouping options:
· group by: the Data Points are grouped by the values
of the specified
Identifiers (groupingId). The Identifiers not specified are
dropped in the result.
· group except: the Data Points are grouped by the
values of the Identifiers
not specified as groupingId. The Identifiers specified as
groupingId are
dropped in the result.
· group all: converts the values of an Identifier
Component using conversionExpr
and keeps all the resulting Identifiers.

groupingId
Identifier Component to be kept (in the group by
clause) or dropped
(in the group except clause).

conversionExpr
specifies a conversion operator (e.g., time_agg) to
convert an Identifier
from finer to coarser granularity. The conversion
operator is applied on an
Identifier of the operand Data Set op.

Reference Manual

302

havingCondition
a condition (boolean expression) at component level,
having only Components
of the input Data Sets as operands (and possibly
constants), to be fulfilled
by the groups of Data Points: only groups for which
havingCondition evaluates
to TRUE appear in the result. The havingCondition
refers to the groups
specified through the groupingClause, therefore it must
invoke aggregate operators
(e.g. avg, count, max…, see also the section
Aggregate invocation).
A correct example of havingCondition is:
max(obs_value) < 1000
instead the condition obs_value < 1000 is not a right
havingCondition, because it
refers to the values of the single Data Points and not to
the groups.
The count operator is used in a havingCondition
without parameters, e.g.:
sum (DS_1 group by id1 having count () >= 10)

Examples of valid syntaxes

DS_1 [aggr M1 := min (Me_1) group by Id_1, Id_2]
DS_1 [aggr M1 := min (Me_1) group except Id_1, Id_2]

Semantics for scalar operations

This operator cannot be applied to scalar values.

Input parameters type

op

dataset

aggrComp

name<component>

aggrExpr

component<scalar>

groupingId

name<identifier>

conversionExpr

identifier<scalar>

havingCondition

component<boolean>

Result type

result

dataset

Reference Manual

303

Additional Constraints

The aggrComp parameter cannot be the name of an Identifier component.

All the components used in aggrExpr must belong to the operand Data Set op.

The conversionExpr parameter applies just one conversion operator to just one Identifier belonging to the input Data
Set. The basic scalar type of the Identifier must be compatible with the basic scalar type of the conversion operator.

Behaviour

The operator aggr calculates aggregations of dependent Components (Measures or Attributes) on the basis of
sub-expressions at Component level. Each Component is calculated through an independent sub-expression. It is
possible to specify the role of the calculated Component among measure, attribute, or viral attribute. The substring
viral allows to control the virality of Attributes, if the Attribute propagation rule is adopted (see the User Manual).
When the role is omitted, the following rule is applied: if the component exists in the operand Data Set then it
maintains its role; if the component does not exist in the operand Data Set then its role is Measure.

The aggrExpr sub-expressions are independent of one another, they can only reference Components of the input
Data Set and cannot use Components generated, for example, by other aggrExpr sub-expressions. The aggr
computed Measures and Attributes are the only Measures and Attributes returned in the output Data Set (plus the
possible viral Attributes). The sub-expressions must contain only Aggregate operators, which are able to compute an
aggregated Value relevant to a group of Data Points. The groups of Data Points to be aggregated are specified
through the groupingClause, which allows the following alternative options.

group by
by the Data Points are grouped by the values of the
specified Identifiers.
The Identifiers not specified are dropped in the result.

group except
the Data Points are grouped by the values of the
Identifiers not specified in
the clause. The specified Identifiers are dropped in the
result.

group all
converts an Identifier Component using conversionExpr
and keeps all the
other Identifiers.

The having clause is used to filter groups in the result by means of an aggregate condition evaluated on the single
groups (for example the minimum number of Data Points in the group).

If no grouping clause is specified, then all the input Data Points are aggregated in a single group and the clause
returns a Data Set that contains a single Data Point and has no Identifiers.

The Attributes calculated through the aggr clauses are maintained in the result. For all the other Attributes that are
defined as viral, the Attribute propagation rule is applied (for the semantics, see the Attribute Propagation Rule
section in the User Manual).

Examples

Given the Data Set DS_1:

Input DS_1 (see structure)

Id_1 Id_2 Id_3 Me_1

1 A XX 0

1 A YY 2

1 B XX 3

1 B YY 5

2 A XX 7

2 A YY 2

Reference Manual

304

https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Clause%20operators/Aggregation/examples/ds_1.json

Example 1

DS_r := DS_1 [aggr Me_1:= sum(Me_1) group by Id_1 , Id_2];

results in (see structure):

DS_r

Id_1 Id_2 Me_1

1 A 2

1 B 8

2 A 9

Example 2

DS_r := DS_1 [aggr Me_3:= min(Me_1) group except Id_3];

results in (see structure):

DS_r

Id_1 Id_2 Me_3

1 A 0

1 B 3

2 A 2

Example 3

DS_r := DS_1 [aggr Me_1:= sum(Me_1), Me_2 := max(Me_1) group by Id_1 , Id_2 having avg (Me_1) > 2];

results in (see structure):

DS_r

Id_1 Id_2 Me_1 Me_2

1 B 8 5

2 A 9 7

Maintaining Components: keep

Syntax

op [keep comp {, comp }*]

Input parameters

op the operand

comp a Component to keep

Examples of valid syntaxes

::

Reference Manual

305

https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Clause%20operators/Aggregation/examples/ex_1.json
https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Clause%20operators/Aggregation/examples/ex_2.json
https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Clause%20operators/Aggregation/examples/ex_3.json

DS_1 [keep Me_2, Me_3]

Semantics for scalar operations

This operator cannot be applied to scalar values.

Input parameters type

op

dataset

comp

name<component>

Result type

result

dataset

Additional Constraints

All the Components comp must belong to the input Data Set op.

The Components comp cannot be Identifiers in op.

Behaviour

The operator takes as input a Data Set (op) and some Component names of such a Data Set (comp). These
Components can be Measures or Attributes of op but not Identifiers. The operator maintains the specified
Components, drops all the other dependent Components of the Data Set (Measures and Attributes) and maintains
the independent Components (Identifiers) unchanged. This operation corresponds to a projection in the usual
relational join semantics (specifying which columns will be projected in among Measures and Attributes).

Examples

Given the Data Set DS_1:

Input DS_1 (see structure)

Id_1 Id_2 Id_3 Me_1 Me_2 At_1

2010 A XX 20 36 E

2010 A YY 4 9 F

2010 B XX 9 10 F

Example 1

DS_r := DS_1 [keep Me_1];

results in (see structure):

DS_r

Id_1 Id_2 Id_3 Me_1

2010 A XX 20

2010 A YY 4

2010 B XX 9

Reference Manual

306

https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Clause%20operators/Maintaining%20Components/examples/ds_1.json
https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Clause%20operators/Maintaining%20Components/examples/ex_1.json

Removal of Components: drop

Syntax

op [drop comp {, comp }*]

Input parameters

op the operand

comp a Component to drop

Examples of valid syntaxes

DS_1 [drop Me_2, Me_3]

Semantics for scalar operations

This operator cannot be applied to scalar values.

Input parameters type

op

dataset

comp

name<component>

Result type

result

dataset

Additional Constraints

All the Components comp must belong to the input Data Set op.

The Components comp cannot be Identifiers in op.

Behaviour

The operator takes as input a Data Set (op) and some Component names of such a Data Set (comp). These
Components can be Measures or Attributes of op but not Identifiers. The operator drops the specified Components
and maintains all the other Components of the Data Set. This operation corresponds to a projection in the usual
relational join semantics (specifying which columns will be projected out).

Examples

Given the Data Set DS_1:

Input DS_1 (see structure)

Id_1 Id_2 Id_3 Me_1 At_1

2010 A XX 20 E

2010 A YY 4 F

2010 B XX 9 F

Reference Manual

307

https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Clause%20operators/Removal%20of%20Components/examples/ds_1.json

Example 1

DS_r := DS_1 [drop At_1];

results in (see structure):

DS_r

Id_1 Id_2 Id_3 Me_1

2010 A XX 20

2010 A YY 4

2010 B XX 9

Change of Component name: rename

Syntax

op [rename comp_from to comp_to { , comp_from to comp_to}*]

Input parameters

op the operand

comp_from the original name of the Component to rename

comp_to the new name of the Component after the renaming

Examples of valid syntaxes

DS_1 [rename Me_2 to Me_3]

Semantics for scalar operations

This operator cannot be applied to scalar values.

Input parameters type

op

dataset

comp_from

name<component>

comp_to

name<component>

Result type

result

dataset

Additional Constraints

The corresponding pairs of Components before and after the renaming (dsc_from and dsc_to) must be defined on
the same Value Domain and the same Value Domain Subset.

Reference Manual

308

https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Clause%20operators/Removal%20of%20Components/examples/ex_1.json

The components used in dsc_from must belong to the input Data Set and the component used in the dsc_to cannot
have the same names as other Components of the result Data Set.

Behaviour

The operator assigns new names to one or more Components (Identifier, Measure or Attribute Components). The
resulting Data Set, after renaming the specified Components, must have unique names of all its Components
(otherwise a runtime error is raised). Only the Component name is changed and not the Component Values,
therefore the new Component must be defined on the same Value Domain and Value Domain Subset as the original
Component (see also the IM in the User Manual). If the name of a Component defined on a different Value Domain
or Set is assigned, an error is raised. In other words, rename is a transformation of the variable without any change
in its values.

Examples

Given the Data Set DS_1:

Input DS_1 (see structure)

Id_1 Id_2 Id_3 Me_1 At_1

1 B XX 20 F

1 B YY 1 F

2 A XX 4 E

2 A YY 9 F

Example 1

DS_r := DS_1 [rename Me_1 to Me_2, At_1 to At_2];

results in (see structure):

DS_r

Id_1 Id_2 Id_3 Me_2 At_2

1 B XX 20 F

1 B YY 1 F

2 A XX 4 E

2 A YY 9 F

Pivoting: pivot

Syntax

op [pivot identifier , measure]

Input parameters

op the operand

identifier the Identifier Component of op to pivot

measure the Measure Component of op to pivot

Examples of valid syntaxes

DS_1 [pivot Id_2, Me_1]

Reference Manual

309

https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Clause%20operators/Change%20of%20Component%20name/examples/ds_1.json
https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Clause%20operators/Change%20of%20Component%20name/examples/ex_1.json

Semantics for scalar operations

This operator cannot be applied to scalar values.

Input parameters type

op

dataset

identifier

name<identifier>

measure

name<measure>

Result type

result

dataset

Additional Constraints

The Measures created by the operator according to the behaviour described below must be defined on the same
Value Domain as the input Measure.

Behaviour

The operator transposes several Data Points of the operand Data Set into a single Data Point of the resulting Data
Set. The semantics of pivot can be procedurally described as follows.

1. It creates a virtual Data Set VDS as a copy of op

2. It drops the Identifier Component identifier and all the Measure Components from VDS.

3. It groups VDS by the values of the remaining Identifiers.

4. For each distinct value of identifier in op, it adds a corresponding measure to VDS, named as the value of
identifier. These Measures are initialized with the NULL value.

5. For each Data Point of op, it finds the Data Point of VDS having the same values as for the common Identifiers
and assigns the value of measure (taken from the current Data Point of op) to the Measure of VDS having the
same name as the value of identifier (taken from the Data Point of op).

The result of the last step is the output of the operation.

Note that pivot may create Measures whose names are non-regular (i.e. they may contain special characters,
reserved keywords, etc.) according to the rules about the artefact names described in the User Manual (see the
section “The artefact names” in the chapter “VTL Transformations”). As said in the User Manual, those names must
be quoted to be referenced within an expression.

Examples

Given the Data Set DS_1:

Input DS_1 (see structure)

Id_1 Id_2 Me_1 At_1

1 A 5 E

1 B 2 F

1 C 7 F

2 A 3 E

2 B 4 E

Reference Manual

310

https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Clause%20operators/Pivoting/examples/ds_1.json

2 C 9 F

Example 1

DS_r := DS_1 [pivot Id_2, Me_1];

results in (see structure):

DS_r

Id_1 A B C

1 5 2 7

2 3 4 9

Unpivoting: unpivot

Syntax

op [unpivot identifier , measure]

Input parameters

op the operand

identifier the Identifier Component to be created

measure the Measure Component to be created

Examples of valid syntaxes

DS_1 [unpivot Id_5, Me_3]

Semantics for scalar operations

This operator cannot be applied to scalar values.

Input parameters type

op

dataset

identifier

name<identifier>

measure

name<measure>

Result type

result

dataset

Additional Constraints

All the measures of op must be defined on the same Value Domain.

Reference Manual

311

https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Clause%20operators/Pivoting/examples/ex_1.json

Behaviour

The unpivot operator transposes a single Data Point of the operand Data Set into several Data Points of the result
Data set. Its semantics can be procedurally described as follows.

1. It creates a virtual Data Set VDS as a copy of op

2. It adds the Identifier Component identifier and the Measure Component measure to VDS

3. For each Data Point DP and for each Measure M of op whose value is not NULL, the operator inserts a Data
Point into VDS whose values are assigned as specified in the following points

4. The VDS Identifiers other than identifier are assigned the same values as the corresponding Identifiers of the
op Data Point

5. The VDS identifier is assigned a value equal to the name of the Measure M of op

6. The VDS measure is assigned a value equal to the value of the Measure M of op

The result of the last step is the output of the operation.

When a Measure is NULL then unpivot does not create a Data Point for that Measure. Note that in general pivoting
and unpivoting are not exactly symmetric operations, i.e., in some cases the unpivot operation applied to the pivoted
Data Set does not recreate exactly the original Data Set (before pivoting).

Examples

Given the Data Set DS_1:

Input DS_1 (see structure)

Id_1 A B C

1 5 2 7

2 3 4 9

Example 1

DS_r := DS_1 [unpivot Id_2, Me_1];

results in (see structure):

DS_r

Id_1 Id_2 Me_1

1 A 5

2 A 3

1 B 2

2 B 4

1 C 7

2 C 9

Subspace: sub

Syntax

op [sub identifier = value { , identifier = value }*]

Input parameters

Reference Manual

312

https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Clause%20operators/Unpivoting/examples/ds_1.json
https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Clause%20operators/Unpivoting/examples/ex_1.json

op dataset

identifier Identifier Component of the input Data Set op

value valid value for identifier

Examples of valid syntaxes

DS_r := DS_1 [sub Id_2 = "A", Id_5 = 1]

Semantics for scalar operations

This operator cannot be applied to scalar values.

Input parameters type

op

dataset

identifier

name<identifier>

value

scalar

Result type

result

dataset

Additional Constraints

The specified Identifier Components identifier (s) must belong to the input Data Set op.

Each Identifier Component can be specified only once.

The specified value must be an allowed value for identifier.

Behaviour

The operator returns a Data Set in a subspace of the one of the input Dataset. Its behaviour can be procedurally
described as follows:

1. It creates a virtual Data Set VDS as a copy of op

2. It maintains the Data Points of VDS for which identifier = value (for all the specified identifier) and eliminates all
the Data Points for which identifier <> value (even for only one specified identifier)

3. It projects out (“drops”, in VTL terms) all the identifier (s)

The result of the last step is the output of the operation.

The resulting Data Set has the Identifier Components that are not specified as identifier (s) and has the same
Measure and Attribute Components of the input Data Set.

The result Data Set does not violate the functional constraint because after the filter of the step 2, all the remaining
identifier (s) do not contain the same Values for all the Data Points. In other words, given that the input Data Set is a
1st order function and therefore does not contain duplicates, the result Data Set is a 1st order function as well. To
show this, let K■,…,K■,…,K■ be the Identifier components for the generic input Data Set DS. Let us suppose that
K■,…,K■ are assigned to fixed values by using the subspace operator. A duplicate could arise only if in the result
there are two Data Points DP■■ and DP■■ having the same value for K■■■,…,K■ , but this is impossible since
such Data Points had same K■,…,K■ in the original Data Set DS, which did not contain duplicates.

Reference Manual

313

If we consider the vector space of Data Points individuated by the n-uples of Identifier components of a Data Set
DS(K■,…,K■,…) (along, e.g., with the operators of sum and multiplication), we have that the subspace operator
actually performs a subsetting of such space into another space with fewer Identifiers. This can be also seen as the
equivalent of a dice operation performed on hyper-cubes in multi-dimensional data warehousing.

Examples

Given the Data Set DS_1:

Input DS_1 (see structure)

Id_1 Id_2 Id_3 Me_1 At_1

1 A XX 20 F

1 A YY 1 F

1 B XX 4 E

1 B YY 9 F

2 A XX 7 F

2 A YY 5 E

2 B XX 12 F

2 B YY 15 F

Example 1

DS_r := DS_1 [sub Id_1 = 1, Id_2 = "A"];

results in (see structure):

DS_r

Id_3 Me_1 At_1

XX 20 F

YY 1 F

Example 2

DS_r := DS_1 [sub Id_1 = 1, Id_2 = "B", Id_3 = "YY"];

results in (see structure):

DS_r

Me_1 At_1

9 F

Example 3

DS_r := DS_1 [sub Id_2 = "A"] + DS_1 [sub Id_2 = "B"];

results in (see structure):

DS_r

Id_1 Id_3 Me_1

Reference Manual

314

https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Clause%20operators/Subspace/examples/ds_1.json
https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Clause%20operators/Subspace/examples/ex_1.json
https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Clause%20operators/Subspace/examples/ex_2.json
https://github.com/sdmx-twg/vtl/blob/master/v2.1/docs/reference_manual/operators/Clause%20operators/Subspace/examples/ex_3.json

1 XX 24

1 YY 10

2 XX 19

2 YY 20

PDF Version

PDF Version

Reference Manual

315

file:///vtl/2.1/html/pdf/VTL_2.1_DOCS.pdf
file:///vtl/VTL_2.1_DOCS.pdf

	Documentation for VTL v2.1
	User Manual
	Foreword
	Introduction
	Structure of the document

	General characteristics of the VTL
	User orientation
	Integrated approach
	Active role for processing
	Independence of IT implementation
	Extensibility, customizability
	Language effectiveness

	Evolution of VTL 2.0 in respect to VTL 1.0
	The Information Model
	Structural artefacts and reusable rules
	The core language and the standard library
	The user defined operators
	The VTL Definition Language
	The functional paradigm
	The operators
	Changes for version 2.1

	VTL Information Model
	Introduction
	Generic Model for Data and their structures
	Data model diagram
	Explanation of the Diagram
	Functional Integrity
	Examples
	The data artefacts

	Generic Model for Variables and Value Domains
	Variable and Value Domain model diagram
	Explanation of the Diagram
	Relations and operations between Code Items
	Conditioned Code Item Relations
	The historical changes
	The Variables and Value Domains artefacts

	Generic Model for Transformations
	Transformations model diagram
	Explanation of the diagram
	Examples
	Functional paradigm
	Transformation Consistency

	VTL Data types
	Data Types overview
	Data Types model diagram
	Explanation of the diagram
	General conventions for describing the types

	Scalar Types
	Basic Scalar Types
	Value Domain Scalar Types
	Set Scalar Types
	External representations and literals used in the VTL Manuals
	Conventions for describing the scalar types

	Compound Data Types
	Component Types
	Data Set Types
	Product Types
	Operator Types
	Ruleset Types
	Universal Set Types
	Universal List Types

	VTL Transformations
	The Expression
	The Assignment
	The Result
	The names
	The artefact names
	The environment name
	The connection to the persistent storage

	VTL Operators
	The categories of VTL operators
	The input parameters
	The invocation of VTL operators
	Level of operation
	The Operators’ behaviour
	The Join operators
	Other operators: default behaviour on Identifiers, Measures and Attributes
	The Identifier Components and the Data Points matching
	The operations on the Measure Components
	Operators which change the basic scalar type
	Boolean operators
	Set operators

	Behaviour for Missing Data
	Behaviour for Attribute Components
	The Attribute propagation rule
	Properties of the Attribute propagation algorithm

	Governance, other requirements and future work
	The governance of the extensions
	Relations with the GSIM Information Model
	Data Sets and Data Structures
	Value Domains
	Transformation model and Business Process Model

	Annex 1 – EBNF
	Properties of VTL grammar

	Reference Manual
	Foreword
	Introduction
	Overwiew of the language and conventions
	Introduction
	Conventions for writing VTL Transformations
	Typographical conventions
	Abbreviations for the names of the artefacts
	Conventions for describing the operators’ syntax
	Description of data types of operands and result
	VTL-ML Operators
	VTL-ML - Evaluation order of the Operators
	Description of VTL Operators

	VTL-DL - Rulesets
	define datapoint ruleset
	Semantics
	Syntax
	Syntax description
	Parameters
	Constraints
	Semantic specification
	Examples

	define hierarchical ruleset
	Semantics
	Syntax
	Syntax description
	Input parameters type
	Constraints
	Semantic specification
	Examples

	VTL-DL – User Defined Operators
	define operator
	Syntax
	Syntax description
	Input parameters type
	Constraints
	Semantic specification
	Examples

	Data type syntax

	VTL-ML - Typical behaviours of the ML Operators
	Typical behaviour of most ML Operators
	Operators applicable on one Scalar Value or Data Set or Data Set Component
	Operators applicable on two Scalar Values or Data Sets or Data Set Components
	Operators applicable on more than two Scalar Values or Data Set Components
	Behaviour of Boolean operators
	Behaviour of Set operators
	Behaviour of Time operators
	Operators changing the data type
	Type Conversion and Formatting Mask
	The Numbers Formatting Mask
	The Time Formatting Mask

	Attribute propagation

	Operators
	VTL-ML - General Purpose Operators
	Parentheses: ()
	Syntax
	Input parameters
	Examples of valid syntaxes
	Semantics for scalar operations
	Input parameters type
	Result type
	Additional Constraints
	Behaviour
	Examples
	Example 1

	Persistent assignment:
	Syntax
	Input parameters
	Examples of valid syntaxes
	Semantics for scalar operations
	Input parameters type
	Result type
	Additional Constraints
	Behaviour
	Examples
	Example 1

	Non-persistent assignment: :=`
	Syntax
	Input parameters
	Examples of valid syntaxes
	Semantics for scalar operations
	Input parameters type
	Result type
	Additional Constraints
	Behaviour
	Examples
	Example 1

	Membership: #
	Syntax
	Input parameters
	Semantics for scalar operations
	Input parameters type
	Result type
	Additional Constraints
	Behaviour
	Examples
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5
	Example 6

	User-defined operator call
	Syntax
	Input parameters
	Examples of valid syntaxes
	Semantics for scalar operations
	Input parameters type
	Result type
	Additional Constraints
	Behaviour
	Examples
	Example 1

	Evaluation of an external routine: eval
	Syntax
	Input parameters
	Examples of valid syntaxes
	Semantics for scalar operations
	Input parameters type
	Result type
	Additional Constraints
	Behaviour
	Examples

	Type conversion: cast
	Syntax
	Input parameters
	Semantics for scalar operations
	Input parameters type
	Result type
	Additional Constraints
	Behaviour
	Examples
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5
	Example 6
	Example 7
	Example 8
	Example 9

	VTL-ML - Join operators
	Join: inner_join, left_join, full_join, cross_join
	Syntax
	Input parameters
	Examples of valid syntaxes
	Semantics for scalar operations
	Input parameters type
	Result type
	Additional Constraints
	Behaviour
	Examples
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5
	Example 6
	Example 7

	VTL-ML - String Operators
	String concatenation: \
	Syntax
	Input parameters
	Semantics for scalar operations
	Input parameters type
	Result type
	Additional Constraints
	Behavior
	Examples
	Example 1
	Example 2

	Whitespace removal: trim, rtrim, ltrim
	Syntax
	Input parameters
	Semantics for scalar operations
	Input parameters type
	Result type
	Additional Constraints
	Behavior
	Examples
	Example 1
	Example 2

	Character case conversion: upper/lower
	Syntax
	Input parameters
	Examples of valid syntaxes
	Semantics for scalar operations
	Input parameters type
	Result type
	Additional Constraints
	Behavior
	Examples
	Example 1
	Example 2

	Sub-string extraction: substr
	Syntax
	Input parameters
	Examples of valid syntaxes
	Semantics for scalar operations
	Input parameters type
	Result type
	Additional Constraints
	Behavior
	Examples
	Example 1
	Example 2
	Example 3

	String pattern replacement: replace
	Syntax
	Input parameters
	Examples of valid syntaxes
	Semantics for scalar operations
	Input parameters type
	Result type
	Additional Constraints
	Behaviour
	Examples
	Example 1
	Example 2

	String pattern location: instr
	Syntax
	Input parameters
	Examplesof valid syntaxes
	Semantics for scalar operations
	Input parameters type
	Result type
	Additional Constraints
	Behaviour
	Examples
	Example 1
	Example 2
	Example 3
	Example 4

	String length: length
	Syntax
	Input parameters
	Examples of valid syntaxes
	Semantics for scalar operations
	Input parameters type
	Result type
	Additional Constraints
	Behaviour
	Examples
	Example 1
	Example 2
	Example 3
	Example 4

	VTL-ML - Numeric Operators
	Unary Plus: +
	Syntax
	Input parameters
	Examples of valid syntaxes
	Semantics for scalar operations
	Input parameters type
	Result type
	Additional Constraints
	Behaviour
	Examples
	Example 1
	Example 2

	Unary Minus: -
	Syntax
	Input parameters
	Examples of valid syntaxes
	Semantics for scalar operations
	Input parameters type
	Result type
	Additional Constraints
	Behaviour
	Examples
	Example 1
	Example 2

	Addition: +
	Syntax
	Input parameters
	examples of valid syntaxes
	Semantics for scalar operations
	Input parameters type
	Result type
	Additional Constraints
	Behaviour
	Examples
	Example 1
	Example 2
	Example 3

	Subtraction: -
	Syntax
	Input parameters
	Examples of valid syntaxes
	Semantics for scalar operations
	Input parameters type
	Result type
	Additional Constraints
	Behaviour
	Examples
	Example 1
	Example 2
	Example 3

	Multiplication: *
	Syntax
	Input parameters
	Examples of valid syntaxes
	Semantics for scalar operations
	Input parameters type
	Result type
	Additional Constraints
	Behavior
	Examples
	Example 1
	Example 2
	Example 3

	Division: /
	Syntax
	Input parameters
	Examples of valid syntaxes
	Semantics for scalar operations
	Input parameters type
	Result type
	Additional Constraints
	Behavior
	Examples
	Example 1
	Example 2
	Example 3

	Modulo: mod
	Syntax
	Input parameters
	Examples of valid syntaxes
	Semantics for scalar operations
	Input parameters type
	Result type
	Additional Constraints
	Behavior
	Examples
	Example 1
	Example 2
	Example 3

	Rounding: round
	Syntax
	Input parameters
	Examples of valid syntaxes
	Semantics for scalar operations
	Input parameters type
	Result type
	Additional Constraints
	Behavior
	Examples
	Example 1
	Example 2
	Example 3

	Truncation: trunc
	Syntax
	Input parameters
	Examples of valid syntaxes
	Semantics for scalar operations
	Input parameters type
	Result type
	Additional Constraints
	Behavior
	Examples
	Example 1
	Example 2
	Example 3

	Ceiling: ceil
	Syntax
	Input parameters
	Examples of valid syntaxes
	Semantics for scalar operations
	Input parameters type
	Result type
	Additional Constraints
	Behaviour
	Examples
	Example 1
	Example 2

	Floor: floor
	Syntax
	Input parameters
	Examples of valid syntaxes
	Semantics for scalar operations
	Input parameters type
	Result type
	Additional Constraints
	Behaviour
	Examples
	Example 1
	Example 2

	Absolute value: abs
	Syntax
	Input parameters
	Examples of valid syntaxes
	Semantics for scalar operations
	Input parameters type
	Result type
	Additional Constraints
	Behavior
	Examples
	Example 1
	Example 2

	Exponential: exp
	Syntax
	Input parameters
	Examples of valid syntaxes
	Semantics for scalar operations
	Input parameters type
	Result type
	Additional Constraints
	Behavior
	Examples
	Example 1
	Example 2

	Natural logarithm: ln
	Syntax
	Input parameters
	Examples of valid syntaxes
	Semantics for scalar operations
	Input parameters type
	Result type
	Additional Constraints
	Behaviour
	Examples
	Example 1
	Example 2

	Power: power
	Syntax
	Input parameters
	Examples of valid syntaxes
	Semantics for scalar operations
	Input parameters type
	Result type
	Additional Constraints
	Behaviour
	Examples
	Example 1
	Example 2

	Logarithm: log
	Syntax
	Input parameters
	Examples of valid syntaxes
	Semantics for scalar operations
	Input parameters type
	Result type
	Additional Constraints
	Behavior
	Examples
	Example 1
	Example 2

	Square root: sqrt
	Syntax
	Input parameters
	Examples of valid syntaxes
	Semantics for scalar operations
	Input parameters type
	Result type
	Additional Constraints
	Behaviour
	Examples
	Example 1
	Example 2

	Random: random
	Syntax
	Input parameters
	Examples of valid syntaxes
	Semantics for scalar operations
	Input parameters type
	Result type
	Additional Constraints
	Behaviour
	Examples
	Example 1
	Example 2

	VTL-ML - Comparison Operators
	Equal to: =
	Syntax
	Input parameters
	Examples of valid syntaxes
	Semantics for scalar operations
	Input parameters type
	Result type
	Additional Constraints
	Behaviour
	Examples
	Example 1
	Example 2

	Not equal to:
	Syntax
	Input parameters
	Examples of valid syntaxes
	Semantics for scalar operations
	Input parameters type
	Result type
	Additional Constraints
	Behaviour
	Examples
	Example 1
	Example 2

	Greater than: > >=
	Syntax
	Input parameters
	Examples of valid syntaxes
	Semantics for scalar operations
	Input parameters type
	Result type
	Additional Constraints
	Behaviour
	Examples
	Example 1
	Example 2
	Example 3

	Less than
	Syntax
	Input parameters
	Examples of valid syntaxes
	Semantics for scalar operations
	Input parameters type
	Result type
	Additional Constraints
	Behaviour
	Examples
	Example 1

	Between between
	Syntax
	Input parameters
	Examples of valid syntaxes
	Semantics for scalar operations
	Input parameters type
	Result type
	Additional Constraints
	Behaviour
	Examples
	Example 1

	Element of in / not_in
	Syntax
	Input parameters
	Examples of valid syntaxes
	Semantics for scalar operations
	Input parameters type
	Result type
	Additional Constraints
	Behavior
	Examples
	Example 1
	Example 2
	Example 3

	Match characters: match_characters
	Syntax
	Input parameters
	Examples of valid syntaxes
	Semantics for scalar operations
	Input parameters type
	Result type
	Additional Constraints
	Behaviour
	Examples
	Example 1

	Is null: isnull
	Syntax
	Input parameters
	Examples of valid syntaxes
	Semantics for scalar operations
	Input parameters type
	Result type
	Additional Constraints
	Behaviour
	Examples
	Example 1
	Example 2

	Exists in: exists_in
	Syntax
	Input parameters
	Examples of valid syntaxes
	Semantics for scalar operations
	Input parameters type
	Result type
	Additional Constraints
	Behaviour
	Examples
	Example 1
	Example 2
	Example 3

	VTL-ML - Boolean Operators
	Logical conjunction: and
	Syntax
	Input parameters
	Examples of valid syntaxes
	Semantics for scalar operations
	Input parameters type
	Result type
	Additional Constraints
	Behavior
	Examples
	Example 1
	Example 2

	Logical disjunction: or
	Syntax
	Input parameters
	Examples of valid syntaxes
	Semantics for scalar operations
	Input parameters type
	Result type
	Additional Constraints
	Behavior
	Examples
	Example 1
	Example 2

	Exclusive disjunction: xor
	Syntax
	Input parameters
	Examples of valid syntaxes
	Semantics for scalar operations
	Input parameters type
	Result type
	Additional Constraints
	Behaviour
	Examples
	Example 1
	Example 2

	Logical negation: not
	Syntax
	Input parameters
	Examples of valid syntaxes
	Semantics for scalar operations
	Input parameters type
	Result type
	Additional Constraints
	Behaviour
	Examples
	Example 1
	Example 2

	VTL-ML - Time Operators
	Period indicator: period_indicator
	Syntax
	Input parameters
	Examples of valid syntaxes
	Semantics for scalar operations
	Input parameters type
	Result type
	Additional Constraints
	Behaviour
	Examples
	Example 1
	Example 2

	Fill time series: fill_time_series
	Syntax
	Input parameters
	Examples of valid syntaxes
	Semantics for scalar operations
	Input parameters type
	Result type
	Additional Constraints
	Behaviour
	Examples
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5
	Example 6
	Example 7
	Example 8

	Flow to stock: flow_to_stock
	Syntax
	Input parameters
	Examples of valid syntaxes
	Semantics for scalar operations
	Input parameters type
	Result type
	Additional Constraints
	Behavior
	Examples
	Example 1
	Example 2
	Example 3
	Example 4

	Stock to flow: stock_to_flow
	Syntax
	Input parameters
	Examples of valid syntaxes
	Semantics for scalar operations
	Input parameters type
	Result type
	Additional Constraints
	Behaviour
	Examples
	Example 1
	Example 2
	Example 3
	Example 4

	Time shift: timeshift
	Syntax
	Input parameters
	Examples of valid syntaxes
	Semantics for scalar operations
	Input parameters type
	Result type
	Additional Constraints
	Behavior
	Examples
	Example 1
	Example 2
	Example 3
	Example 4

	Time aggregation: time_agg
	Syntax
	Input parameters
	Examples of valid syntaxes
	Semantics for scalar operations
	Input parameters type
	Result type
	Additional Constraints
	Behaviour
	Examples
	Example 1
	Example 2
	Example 3
	Example 4

	Actual time: current_date
	Syntax
	Input parameters
	Examples of valid syntaxes
	Semantics for scalar operations
	Input parameters type
	Result type
	Additional Constraints
	Behavior
	Examples
	Example 1
	Example 2

	Days between two dates: datediff
	Syntax
	Input parameters
	Examples of valid syntaxes
	Semantics for scalar operations
	Input parameters type
	Result type
	Additional Constraints
	Behaviour
	Examples
	Example 1
	Example 2

	Add a time unit to a dete: dateadd
	Syntax
	Input parameters
	Examples of valid syntaxes
	Semantics for scalar operations
	Input parameters type
	Result type
	Additional Constraints
	Behaviour
	Examples
	Example 1
	Example 2

	Extract time period from a date: getyear, getmonth, dayofmonth, dayofyear
	Syntax
	Input parameters
	Examples of valid syntaxes
	Semantics for scalar operations
	Input parameters type
	Result type
	Additional Constraints
	Behaviour
	Examples
	Example 1
	Example 2

	Number of days to duration: daytoyear, daytomonth
	Syntax
	Input parameters
	Examples of valid syntaxes
	Semantics for scalar operations
	Input parameters type
	Result type
	Additional Constraints
	Behaviour
	Examples
	Example 1
	Example 2
	Example 2
	Example 3

	Duration to number of days: yeartoday, monthtoday
	Syntax
	Input parameters
	Examples of valid syntaxes
	Semantics for scalar operations
	Input parameters type
	Result type
	Additional Constraints
	Behaviour
	Examples
	Example 1
	Example 2
	Example 3

	VTL-ML - Set Operators
	Union: union
	Syntax
	Input parameters
	Examples of valid syntaxes
	Semantics for scalar operations
	Input parameters type
	Result type
	Additional Constraints
	Behaviour
	Examples
	Example 1
	Example 2

	Intersection: interesect
	Syntax
	Input parameters
	Examples of valid syntaxes
	Semantics for scalar operations
	Input parameters type
	Result type
	Additional Constraints
	Behavior
	Examples
	Example 1

	Set difference: setdiff
	Syntax
	Input parameters
	Examples of valid syntaxes
	Semantics for scalar operations
	Input parameters type
	Result type
	Additional Constraints
	Behavior
	Examples
	Example 1
	Example 2

	Symmetric difference: symdiff
	Syntax
	Input parameters
	Semantics for scalar operations
	Input parameters type
	Result type
	Additional Constraints
	Behaviour
	Examples
	Example 1

	VTL-ML - Hierarchical aggregation
	Hierarchical roll-up: hierarchy
	Syntax
	Input parameters
	Examples of valid syntaxes
	Semantics for scalar operations
	Input parameters type
	Result type
	Additional Constraints
	Behaviour
	Examples
	Example 1
	Example 2
	Example 3

	VTL-ML - Aggregate and Analytic operators
	Aggregate invocation
	Syntax
	Input parameters
	Examples of valid syntaxes
	Semantics for scalar operations
	Input parameters type
	Result type
	Additional Constraints
	Behaviour
	Examples
	Example 1
	Example 2
	Example 3
	Example 4

	Analytic invocation
	Syntax
	Input parameters
	Examples of valid syntaxes
	Semantics for scalar operations
	Input parameters type
	Result type
	Additional Constraints
	Behaviour
	Examples
	Example 1

	Counting the number of data points: count
	Syntax
	Input parameters
	Semantics for scalar operations
	Input parameters type
	Result type
	Additional Constraints
	Behaviour
	Examples
	Example 1
	Example 2

	Minimun value: min
	Syntax
	Input parameters
	Semantics for scalar operations
	Input parameters type
	Result type
	Additional Constraints
	Behaviour
	Examples
	Example 1

	Maximum value: max
	Syntax
	Input parameters
	Semantics for scalar operations
	Input parameters type
	Result type
	Additional Constraints
	Behaviour
	Examples
	Example 1

	Median value: median
	Syntax
	Input parameters
	Semantics for scalar operations
	Input parameters type
	Result type
	Additional Constraints
	Behaviour
	Examples
	Example 1

	Sum: sum
	Syntax
	Input parameters
	Semantics for scalar operations
	Input parameters type
	Result type
	Additional Constraints
	Behaviour
	Examples
	Example 1

	Average value: avg
	Syntax
	Input parameters
	Semantics for scalar operations
	Input parameters type
	Result type
	Additional Constraints
	Behaviour
	Examples
	Example 1

	Population standard deviation: stddev_pop
	Syntax
	Input parameters
	Semantics for scalar operations
	Input parameters type
	Result type
	Additional Constraints
	Behaviour
	Examples
	Example 1

	Sample standard deviation: stddev_samp
	Syntax
	Input parameters
	Semantics for scalar operations
	Input parameters type
	Result type
	Additional Constraints
	Behaviour
	Examples
	Example 1

	Population variance: var_pop
	Syntax
	Input parameters
	Semantics for scalar operations
	Input parameters type
	Result type
	Additional Constraints
	Behaviour
	Examples
	Example 1

	Sample variance: var_samp
	Syntax
	Input parameters
	Semantics for scalar operations
	Input parameters type
	Result type
	Additional Constraints
	Behaviour
	Examples
	Example 1

	First value: first_value
	Syntax
	Input parameters
	Semantics for scalar operations
	Input parameters type
	Result type
	Additional Constraints
	Behaviour
	Examples
	Example 1

	Last value: last_value
	Syntax
	Input parameters
	Semantics for scalar operations
	Input parameters type
	Result type
	Additional Constraints
	Behaviour
	Examples
	Example 1

	Lag: lag
	Syntax
	Input parameters
	Semantics for scalar operations
	Input parameters type
	Result type
	Additional Constraints
	Behaviour
	Examples
	Example 1

	Lead: lead
	Syntax
	Input parameters
	Semantics for scalar operations
	Input parameters type
	Result type
	Additional Constraints
	Behaviour
	Examples
	Example 1

	Rank: rank
	Syntax
	Input parameters
	Semantics for scalar operations
	Input parameters type
	Result type
	Additional Constraints
	Behaviour
	Examples
	Example 1

	Ratio to report: ratio_to_report
	Syntax
	Input parameters
	Semantics for scalar operations
	Input parameters type
	Result type
	Additional Constraints
	Behaviour
	Examples
	Example 1

	VTL-ML - Data Validation Operators
	Check datapoint: check_datapoint
	Syntax
	Input parameters
	Examples of valid syntaxes
	Semantics for scalar operations
	Input parameters type
	Result type
	Additional Constraints
	Behaviour
	Examples
	Example 1
	Example 2

	Check hierarchy: check_hierarchy
	Syntax
	Input parameters
	Examples of valid syntaxes
	Input parameters type
	Result type
	Additional Constraints
	Behaviour
	Examples
	Example 1

	Check : check
	Syntax
	Input parameters
	Examples of valid syntaxes
	Input parameters type
	Result type
	Additional Constraints
	Behaviour
	Examples
	Example 1

	VTL-ML - Conditional Operators
	if-then-else: if
	Syntax
	Input parameters
	Examples of valid syntaxes
	Semantics for scalar operations
	Input parameters type
	Result type
	Additional Constraints
	Behaviour
	Examples
	Example 1

	Case: case
	Syntax
	Input parameters
	Examples of valid syntaxes
	Semantics for scalar operations
	Input parameters type
	Result type
	Additional Constraints
	Behaviour
	Examples
	Example 1

	Nvl: nvl
	Syntax
	Input parameters
	Examples of valid syntaxes
	Semantics for scalar operations
	Input parameters type
	Result type
	Additional Constraints
	Behaviour
	Examples
	Example 1

	VTL-ML - Clause Operators
	Filtering Data Points: filter
	Syntax
	Input parameters
	Examples of valid syntaxes
	Semantics for scalar operations
	Input parameters type
	Result type
	Additional Constraints
	Behavior
	Examples
	Example 1

	Calculation of a Component: calc
	Syntax
	Input parameters
	Examples of valid syntaxes
	Semantics for scalar operations
	Input parameters type
	Result type
	Additional Constraints
	Behavior
	Examples
	Example 1
	Example 2

	Aggregation: aggr
	Syntax
	Input parameters
	Examples of valid syntaxes
	Semantics for scalar operations
	Input parameters type
	Result type
	Additional Constraints
	Behaviour
	Examples
	Example 1
	Example 2
	Example 3

	Maintaining Components: keep
	Syntax
	Input parameters
	Examples of valid syntaxes
	Semantics for scalar operations
	Input parameters type
	Result type
	Additional Constraints
	Behaviour
	Examples
	Example 1

	Removal of Components: drop
	Syntax
	Input parameters
	Examples of valid syntaxes
	Semantics for scalar operations
	Input parameters type
	Result type
	Additional Constraints
	Behaviour
	Examples
	Example 1

	Change of Component name: rename
	Syntax
	Input parameters
	Examples of valid syntaxes
	Semantics for scalar operations
	Input parameters type
	Result type
	Additional Constraints
	Behaviour
	Examples
	Example 1

	Pivoting: pivot
	Syntax
	Input parameters
	Examples of valid syntaxes
	Semantics for scalar operations
	Input parameters type
	Result type
	Additional Constraints
	Behaviour
	Examples
	Example 1

	Unpivoting: unpivot
	Syntax
	Input parameters
	Examples of valid syntaxes
	Semantics for scalar operations
	Input parameters type
	Result type
	Additional Constraints
	Behaviour
	Examples
	Example 1

	Subspace: sub
	Syntax
	Input parameters
	Examples of valid syntaxes
	Semantics for scalar operations
	Input parameters type
	Result type
	Additional Constraints
	Behaviour
	Examples
	Example 1
	Example 2
	Example 3

